Dev story умножение без таблицы. история для тех, кто хочет научиться умножать быстрее

Умножение 2 класс

Второй класс – это только начала изучения умножения, поэтому второклассники решают простейшие задачки на замену сложения умножением, умножают числа, учат таблицу умножения.Давайте рассмотрим задачи на умножение уровня второго класса:

  1. Олег живет в пяти этажном доме, на самом верхнем этаже. Высота одного этажа равняется 2 метрам. Какова высота дома?

  2. В коробке находятся 10 упаковок с печеньем. В каждой упаковке их 7 штук. Сколько печенья в коробке?

  3. Миша расставил свои игрушечные машинки в ряд. В каждом ряду их 7, а рядов всего 8. Сколько у Миши машинок?

  4. В столовой стоят 6 столов, а за каждым столом задвинуты 5 стульев. Сколько стульев в столовой?

  5. Мама с магазина принесла 3 пакета с апельсинами. В пакетах находятся по 22 апельсина. Сколько апельсиновпринесла мама?

  6. В саду растет 9 кустов клубники, а на каждом кустике растет 11 ягод. Сколько ягод растет на всех кустиках?

  7. Рома положил друг за другом 8 деталей трубы, одинакового размера по 2 метра. Какова длина полной трубы?

  8. В школу родители на первое сентября привезли детей. Приехало 12 машин, в каждой было по 2 ребенка. Сколькодетей привезли родители на этих машинах?

Популярные методы устного счета

Без грамотной подготовки произвести в уме правильные расчеты многозначных чисел будет проблематично. Не каждый человек способен быстро умножать двузначные числа, а трехзначные и четырехзначные выражения будут для него особенно затруднительными. На данный момент не существует универсального вычислительного метода, который можно было бы использовать при любых обстоятельствах. 

Любой человек может проявить рассеянность и сбиться в процессе счета, а потому даже самые популярные методы не всегда будут результативными. Они могут стать хорошим тренингом для активизации мозговой деятельность человека, но не универсальным инструментом. Поэтому родители находятся в поиске более эффективных техник счета, одной из которых является ментальная арифметика.

Умножение по формуле «разность квадратов»

Если кто-то не помнит эту формулу из школьного курса математики, вот она:a2 — b2 = (a + b) × (a — b)

Допустим, нужно умножить 123 на 117. Данное произведение удобно разложить по этой формуле, т. к. 123 = 120 + 3, а 117 = 120 — 3. Составим простое выражение и убедимся, что можно легко «вертеть» в уме даже такими значениями, для которых, казалось бы, необходим калькулятор: 123 × 117 = (120 + 3) × (120 — 3) = 1202 — 32 = 14400 — 9 = 14391

Ещё пример, на этот раз попроще, для двузначных чисел: умножим 28 на 32. Снова раскладываем множители на составляющие: 28 = 30 — 2 и 32 = 30 + 2. Итоговая формула принимает вид: 28 × 32 = (30 + 2) × (30 — 2) = 302 — 22 = 900 — 4 = 896

Элементарно, не так ли? 😉

Поддержка сайта
С удовольствием создаю годный контент. Буду очень признателен, если вы поддержите мои усилия:

днём интернета
шоколадкой для работы мозга
коробочкой ароматного чая для бодрости

продлением хостинга на +1 месяц

2 070

не в сети 1 месяц

Игры на развитие устного счета

Специальные развивающие игры разработанные при участии российских ученых из Сколково помогут улучшить навыки устного счета в интересной игровой форме.

Игра «Быстрый счет»

Игра «быстрый счет» поможет вам усовершенствовать свое мышление. Суть игры в том, что на представленной вам картинке, потребуется выбрать ответ «да» или «нет» на вопрос «есть ли 5 одинаковых фруктов?». Идите за своей целью, а поможет вам в этом данная игра.

Игра «Математические матрицы»

«Математические матрицы» великолепное упражнение для мозга детей, которое поможет вам развить его мыслительную работу, устный счет, быстрый поиск нужных компонентов, внимательность. Суть игры заключается в том, что игроку предстоит из предложенных 16 чисел найти такую пару, которая в сумме даст данное число, например на картинке ниже данное число «29», а искомая пара «5» и «24».

Игра «Числовой охват»

Игра «числовой охват» нагрузит вашу память во время занятий с данным упражнением.

Суть игры – запомнить цифру, на запоминание которой отводится около трех секунд. Затем нужно ее воспроизвести. По мере прохождения этапов игры, количество цифр растет, начинаете с двух и далее.

Игра «Угадай операцию»

Игра «Угадай операцию» развивает мышление и память. Главная суть игры надо выбрать математический знак, чтобы равенство было верным. На экране даны примеры, посмотрите внимательно и поставьте нужный знак «+» или «-», так чтобы равенство было верным. Знак «+» и «-» расположены внизу на картинке, выберите нужный знак и нажмите на нужную кнопку. Если вы ответили правильно, вы набираете очки и продолжаете играть дальше.

Игра «Упрощение»

Игра «Упрощение» развивает мышление и память. Главная суть игры надо быстро выполнить математическую операцию. На экране нарисован ученик у доски, и дано математическое действие, ученику надо посчитать этот пример и написать ответ. Внизу даны три ответа, посчитайте и нажмите нужное вам число с помощью мышки. Если вы ответили правильно, вы набираете очки и продолжаете играть дальше.

Игра «Быстрое сложение»

Игра «Быстрое сложение» развивает мышление и память. Главная суть игры выбирать цифры, сумма которых равна заданной цифре. В этой игре дана матрица от одного до шестнадцати. Над матрицей написано заданное число, надо выбрать цифры в матрице так, чтобы сумма этих цифр была равна заданной цифре. Если вы ответили правильно, вы набираете очки и продолжаете играть дальше.

Игра «Визуальная геометрия»

Игра «Визуальная геометрия» развивает мышление и память. Главная суть игры быстро считать количество закрашенных объектов и выбрать его из списка ответов. В этой игре на экране на несколько секунд показываются синие квадратики, их надо быстро посчитать, потом они закрываются. Снизу под таблицей написаны четыре числа, надо выбрать одно правильное число и нажать на него с помощью мышки. Если вы ответили правильно, вы набираете очки и продолжаете играть дальше.

Игра «Математические сравнения»

Игра «Математические сравнения» развивает мышление и память. Главная суть игры сравнить числа и математические операции. В этой игре надо сравнить два числа. На верху, написан вопрос, прочитайте его и ответьте правильно на поставленный вопрос. Ответить можно при помощи кнопок расположенных внизу. Там нарисованы три кнопки «левое», «равно» и «правое». Если вы ответили правильно, вы набираете очки и продолжаете играть дальше.

Как научить ребенка считать в уме

Ментальная арифметика – это далеко не новая система быстрого счета, ведь она зародилась еще в древности, около пяти тысяч лет назад. С тех пор данная методика не претерпела серьезных изменений и дошла до нас в практически первозданном виде. В ее основе лежат вычисления на абакусе – специальных счётах. Сначала человек учится решать простейшие примеры на них, а затем постепенно переходит к более сложному этапу обучения – учится представлять абакус в уме и производить вычисления на нем в своем воображении.

Лучше всего ментальная арифметика подходит именно детям. Нет, взрослые также могут ее освоить, но для этого им придется абстрагироваться от привычных методов операций с числами, а ребенок справляется с этим намного легче. Для него ментальная арифметика является не только помощником на уроках математики, но и способом развить свои интеллектуальные способности до очень высокого уровня.

Весь секрет этой методики в том, что она подразумевает разностороннее развитие человека. За логику и анализ отвечает правое полушарие мозга, именно оно задействуется на обычных уроках математики, когда мы решаем примеры или задачи. Правое полушарие, отвечающее за креативное мышление и фантазию, в этом случае к работе почти не подключается, а значит и не развивается должным образом. А ведь все области человеческого интеллекта необходимо тренировать.

Так как ментальная арифметика задействует и аналитическое мышление, и воображение, она является даже не столько способом быстро решать математические задачи, сколько средством для всестороннего развития. Другие методики чаще всего направлены на тренировку какой-то одной способности, а данная техника работает комплексно. Именно это выделяет ее среди прочих и делает одной из самых популярных систем развития интеллекта ребенка.

Обучение ментальной арифметике занимает достаточно много времени, но те преимущества, которые она дает, оправдывают затраченные усилия

Когда речь идет об обучении ребенка по данной методике, важно подобрать правильную программу тренировок. Ключевым фактором успеха является соблюдение плана занятий и контроль их регулярности

Несмотря на то, что в открытых источниках в интернете можно найти много информации по этому запросу, не всегда удается самостоятельно освоить ментальную арифметику. Поэтому большинство родителей предпочитают обучать ребенка этой технике в детских центрах дополнительного образования.

Техника деления

Математическая формула деления – это «обратное» умножению. То есть при умножении складывали, а при делении вычитают. Чтобы разделить 56 на 7, подбирают число, при умножении которого на 7 в итоге будет 56. Зная таблицу умножения, сделать это просто, искомое число 8.

При делении многозначного числа на однозначное от исходного показателя «отрезают» круглые части, каждая из которых будет делиться на 8, в соответствии с таблицей умножения.

Пример 6144/8 решают так:

  1. Из 6144 выделяют максимально большую часть, делимую на 8. Это 5600, поскольку следующее число по таблице умножения 64.
  2. 6144-5600 = 544.
  3. Итого 6144/8 = (5600+544)/8 = 700+544/8.
  4. Чтобы поделить 544 на 8, снова выделяют из числа большую часть, делимую на 8 по таблице умножения. Это будет 480. В итоге получают остаток 64, поскольку 544-480 = 64.
  5. Продолжают деление 544/8 = (480+64)/8 = 60+64/8.
  6. Вспоминают все полученные ранее результаты: 700+60=760, решают задачу 64/8 = 8.

В итоге получают 760+8 = 768.

Техника деления на двузначное число

Эта самая гениальная техника, ни на что не похожая. Решая пример 5148/66, делают так:

  • подгадывают, в каком десятке будет лежать результат;
  • получают 70, поскольку при решении 70*66 = 4620, это самое близкое число к исходному делимому 5148;
  • применяют математический закон о последней цифре результата умножения двух чисел – она всегда совпадает с последней цифрой результата умножения;
  • получают искомое число, которое при умножении на 66 дает 5148 – это будет окончание на 3 или на 8 (3*6 = 18, 8*6 = 48);
  • считают по окончаниям в десятке между 70 и 80 – находят всего два числа 73 и 78;
  • теперь умножают 78*66 = 78*60+78*6 = 4680+468 = 500+148 = 5148.

Правильный ответ примера 5148/66 = 78.

Деление на 5, 50, 25

Применяют правило – умножают число на 2 и перемещают запятую на одну цифру назад. Например, 145/5 = 145*2 = 290, смещение запятой назад дает в итоге 29.

При делении на 50, 25 применяют формулы:

  • А/50 = А*2/100;
  • А/25 = А*4/100.

Например, 2350/50 = 2350*20/100 = 4700/100 = 47 и т.д.

Оба числа больше опорного (над опорным)

Допустим, мы хотим умножить 54 на 53. Эти числа находятся достаточно близко к числу 50, а следовательно удобно использовать 50 в качестве опорного числа. Но в отличие от предыдущих примеров, эти числа больше опорного. По сути, модель их умножения не меняется, но теперь нужно не вычитать остатки, а прибавлять.

  1. К 54 прибавить столько, на сколько 53 превышает 50, то есть 3. Получается 57 (или к 53 прибавить 4 – это всегда одно и то же)
  2. Дальше 57 умножаем на 50 = 2 850 (умножение на 50 – схоже с делением на 2)
  3. Затем прибавляем 4*3 к этому результату. Ответ: 2862

4

*

3

+12

50

(опорное число)

54

*

53

(54+3)*50 = 2 850

или (53+4)*50= 57*50 (вспомните, что умножение на 5 – это тоже самое что деление на 2)

Ответ:

2 862

Короткое решение выглядит так: 50*57+12 = 2 862

Для наглядности еще ниже приведены примеры:

3

*

7

+21

20

(опорное число)

23

*

27

(23+7)*20 = 600

Ответ:

621

Короткая запись: Короткая запись: 23*27 = 20*30 + 21 = 621

Умножить 51*63

1

*

13

+13

50

(опорное число)

51

*

63

(63+1)*50 = 3 200

Ответ:

3 213

Короткая запись: Короткая запись: 51*63 = 64*50 + 13 = 3 213

Когда можно приступать к изучению

Согласно Федеральному государственному образовательному стандарту (ФГОС) таблица умножения изучается во втором классе, так как для понимания сути правил умножения ребята должны иметь представление о сложении, ведь умножение — это множественное сложение. Иными словами, чтобы умножить 3 на 4, нужно произвести следующее арифметическое действие: 3+3+3+3. Кроме решения арифметических задач на бумаге, можно использовать игры, например, с игрушками, о которых пойдёт речь ниже. Таким образом, родители, стремящиеся опередить время и изучить с ребёнком таблицу раньше положенного второго класса, должны уяснить, что изучение умножения возможно только тогда, когда малыш понимает принцип сложения.

Для понимания принципа умножения ребёнок должен осознавать суть сложения

С чего начать изучение

На этом этапе лучше воспользоваться классическим вариантом таблицы, а не тем, что обычно печатается на обложках тетрадей. Первым шагом изучения должно стать рассмотрение устройства таблицы, а именно: произведением является число, расположенное на пересечении строки и столбца множителей.

Начиная изучать таблицу, стоит распечатать её в виде плаката и повесить на видном месте в комнате ребёнка

Создаём ситуацию успеха

Таблица со множеством цифр, как правило, сначала вызывает у ребёнка любопытство, но когда дело касается заучивания, приводит в уныние

Поэтому очень важно с самого начала изучения создать ситуацию успеха. А для этого начать с простейших примеров

  1. Умножение на 1 — число остаётся «самим собой».
  2. Умножаем на 10 — добавляем к числу 0.
  3. Умножаем на 2 — складываем два одинаковых числа.
  4. Умножение на 0 — всегда равно 0.
  5. Перемена множителей — переставляя множители (4х3 или 3х4), произведение будет неизменным. Тут помогает свойство мозга искать во всём симметрию. И здесь же нужно показать юному математику, что достаточно выучить половину каждого ряда таблицы (каждое число, умноженное на 5 включительно), чтобы знать всю.

Лучший способ научиться устному счету

Ментальная арифметика – это не только уникальный способ счета без подручных средств. В основе этой методики лежит равнозначное развитие как левого полушария мозга, отвечающего за логику и анализ, так и правого, которое контролирует работу воображения и фантазии. Несмотря на то, что освоить ментальную арифметику может любой желающий, она все же больше подходит для изучения в раннем возрасте. Именно в детстве можно приобрести навыки, которые не забудутся со временем и сохранятся на всю жизнь.

Обучение ментальной арифметике – длительный процесс, который требует усидчивости и нацеленности на результат. Пройдет немало времени, пока ребенок сможет полностью освоить программу и научиться не только складывать и вычитать, но и умножать и делить многозначные числа. Родителям не всегда удается контролировать периодичность занятий своего ребенка, а также следить за тем, чтобы он выполнял все необходимые упражнения. Этим обусловлен рост популярности групповых занятий ментальной арифметикой в центрах дополнительного развития детей.

Ученики, обучающиеся по этому направлению, сначала осваивают вычисления на древних счетах – абакусе. Когда базовые навыки закрепятся, наступает время для перехода к следующему, более сложному этапу. Теперь ученик постепенно привыкает представлять абакус в своем воображении и производить подсчеты уже на нем. Именно так и удается развить навык быстрого счета.

Благодаря занятиям ментальной арифметикой ребенок повышает успеваемость в школе, ведь теперь ему доступны не только простые вычисления в уме, но и быстрое умножение и деление. Количество времени, которое он тратит на выполнение домашних заданий, также сокращается. Так удается добиться большей продуктивности образовательного процесса в школе и дома. Навыки, приобретенные благодаря ментальной арифметике, сохранятся навсегда, что очень пригодится во взрослой жизни.

Популярные методы устного умножения

Сегодня существует сразу несколько способов умножения в уме. Они не универсальны, но позволяют достаточно успешно производить операции с двузначными числами. Чтобы подобрать для себя оптимальный, лучше ознакомиться с самыми популярными из них:

Вариант 1. Умножение в столбик

Этот вариант отлично подходит тем, кто способен хорошо запоминать и удерживать в памяти сразу несколько промежуточных результатов вычислений. Благодаря этому подходу можно легко производить операции между двузначными числами. Рассмотрим данный вид счета на примере выражения 34*63.

Сначала необходимо умножить 34 на единицы второго числа: 34*3=102. Запоминаем это значение. Затем повторяем операцию уже с десятками множителя: 34*60=2040. Теперь требуется просто сложить результаты наших вычислений: 102+2040=2142

Вариант 2. Умножение с разложением на десятки и единицы

Этот вариант также требует хорошей памяти. Рассмотрим его на примере прошлого выражения 34*63.

Сначала требуется разложить числа на десятки и единицы, у нас получится: (30+4)*(60+3). Далее мы перемножаем между собой десятки: 30*60=1800. Запоминаем этот результат. Затем необходимо умножить десятки первого значения на единицы второго и наоборот: (30*3)+(60*4)=330. Теперь наступает самая сложная часть, главное – не сбиться. Нам нужно сложить результаты наших первых двух примеров и прибавить к ним произведение единиц перемножаемых чисел. Получится следующее выражение: 1800+330+4*3=2142.

Вариант 3. Умножение с большими числами

Этот вид вычислений больше подходит для тех двузначных чисел, которые близки к 100. Рассмотрим этот способ на примере выражения 88*95.

Сначала нужно представить каждое из этих значений как разность 100 и другого числа: 100-a=88 и 100-b=95, a=12, b=5. Так у нас получится (100-12)*(100-5). Теперь нужно произвести следующие вычисления: 88-b и 95-a, 88-5 и 95-12, получится 83 в обоих случаях. Это значение нужно запомнить. Теперь нам нужно найти a*b=12*5=60. Наш итоговый ответ будет состоять из четырех цифр от полученных ранее ответов: 83 и 60, получается 8360.

Иногда в результате подсчетов получается, что второе итоговое значение имеет три знака, а не два. Допустим, у нас получились числа 12 и 345. В этом случае нужно сложить вторую и третью цифру так, чтобы получилось 1545.

Это основные методы устного умножения. Но можно ли их назвать простыми? Несмотря на то, что при усердных тренировках удастся освоить любой из этих подходов, все же они будут требовать хорошей памяти и высокой концентрации. К тому же, не всегда допустимо проводить операции с многозначными числами с помощью данных методов. Лучше постараться найти для себя другие, более простые способы счета.

Как считать чаевые в процентах

Быстрое определение суммы чаевых – обязательная мера в кафе или ресторане

Иногда в заведениях общепита уже заложены чаевые и тут важно быстро считать, чтобы пользователя не обманули

Например, вычисление 7% от 300 делают так:

  • раскладывают большое число на сотни;
  • из каждой 100 считают 7%, это 7;
  • складывают количество высчитанных процентов по количеству сотен = 7+7+7 = 21.

Итого 7% от 300 = 21. Точно таким же образом считают все проценты. Поняв, что 1% из 100 равен 1, легко вычислить необходимую сумму выплат. Например, 5% от суммы чека в 1650 рублей составят: (5% от 1000 = 50) + (5% от 600 = 30) + (5% из 50 = 2,5) = 50+30+2,5 = 82,5 рубля. Итого сверх суммы обеда чаевые полагаются не более 82,5 руб.

Вот и все премудрости. Зная их, взрослый никогда не ошибется в сдаче на кассе, рынке. Также будет просто объяснить правила математики малышу.

Как ребенку научиться быстро считать в уме:

  • тренироваться каждый день вместе с родителями;
  • считать собственные деньги, затраты.

Тут многое делают родители, отправляя ребенка в магазин и поручая считать сдачу. Быстрее всего учатся считать на деньгах. И именно эти знания затем пригодятся в жизни.

Популярная система быстрого счета

Существует несколько видов основных математических операций – сложение, вычитание, умножение и деление. И если с нахождением суммы и разности все более или менее понятно, то другие вычисления производить намного сложнее. Рассмотрим самые популярные математические хитрости, направленные на удобное умножение и деление в уме.

Умножение любого числа на 9

Решать устно такие примеры очень легко. Для этого достаточно умножить нужное значение на 10 и вычесть из получившегося ответа это же число. Например, нам нужно найти результат умножения 19 и 9. Пример будет выглядеть так: 19*10-19= 190-19=171. Этот прием достаточно легко применять на практике.

Умножение любого числа на 11

Похожим образом выглядит умножение любого значения на 11: мы находим произведение нашего числа и 10, а затем прибавляем к получившемуся выражению наше число. Допустим, мы ищем сколько будет 67*11, так у нас получается следующий пример: 67*10+67=670+67=737.

Умножение двузначного числа на однозначное

Проще всего производить такую операцию методом разбора множителей на десятки и единицы. Допустим, нам требуется перемножить 56 и 8. Для этого мы разделяем 56 на составные части, получается 50 и 6. Теперь мы отдельно перемножаем наши десятки и единицы на однозначное число и ищем их сумму. Получается 50*8+6*8=400+48=448. Но чем больше знаков в каждом из перемножаемых значений, тем сложнее производить подобные операции в уме.

Умножение двузначного числа на двузначное

Нахождение результата умножения двузначных чисел похоже на предыдущий метод. К примеру, необходимо найти произведение 24 и 52. Для этого мы разбиваем одно из чисел на десятки и единицы и перемножаем их на наш множитель, а затем складываем полученные выражения: 20*52+4*52=1040+208=1248. Чем больше каждое из чисел, тем сложнее находить результат умножения.

Нахождение процента от числа

Чтобы найти процент от любого значения, нужно умножить данное число на размер искомого процента и разделить на сто. Лучше рассмотреть данный подход на примере. Допустим, требуется найти 12% от 74. Мы производим умножение 12 и 74, разбирая это выражение на составные части. Получается 10*74+2*74=740+148=888. Теперь мы делим наш результат на 100 и получаем ответ – 8,88%. Так удается легко находить процент от любого значения без помощи калькулятора.

Деление многозначного числа на однозначное

Чтобы найти ответ на такой пример, нужно вспомнить таблицу умножения. Допустим, нам требуется разделить число 138 на 6. Для этого мы разбиваем делимое на части, получается 13 десятков и 8 единиц. Делим 13 на 6, получаем 2 и 1 в остатке. Это значит, что десятком в нашем ответе будет число 2. Остаток, а это 1 десяток, мы складываем с единицей делимого, получается 18. Делим 18 на 6, получается 3. Теперь складываем получившиеся десятки и единицы: 20+3=23. Целое выражение будет выглядеть так: 120/6+(10+8)/6=20+18/6=23.

Существуют и другие, более сложные приемы устных математических вычислений, которые позволяют выполнять операции с многозначными числами. Но и освоить эти техники труднее, так как они требуют высокой концентрации и хорошо развитой памяти.

К плюсам всех подобных приемов можно отнести уже то, что такому счету можно научиться достаточно быстро. Перечисленные способы имеют множество вариаций от простых до более сложных, поэтому некоторые из них охотно используют даже дети. Но все эти методы имеют один существенный недостаток, который не позволяет им называться полноценной системой счета в уме.

Такие способы вычислений подразумевают соблюдение целого ряда условий. Например, правила для умножения трехзначных чисел отличаются от правил для двузначных. Поэтому приходится запоминать большое количество условий, чтобы можно было применять в быту такие способы счета. Все это делает подобные методы сложения, вычитания, умножения и деления скорее зарядкой для ума, чем продуктивным подходом к вычислениям.

Но существуют и кардинально иные техники, позволяющие развить навыки человека и научиться очень хорошо считать без подручных средств. Одной из самых популярных методик быстрого устного счета является ментальная арифметика. Рассмотрим ее преимущества подробнее.

Действие сложения

Рассмотрим, как взрослому научиться быстро считать в уме сложение многозначных чисел. Надо уметь складывать одинаковые разряды. Исходные данные разбивают на определенные разряды и складывают – тысячи с тысячами, сотни с сотнями и т.д. Разбивка «по старшинству» ускоряет сложение.

Пример сложения 456 и 789:

  • разбивают 456 на 400, 50, 6;
  • разбивают 789 на 700, 80, 9;
  • складывают по разрядам, получая 1100, 130, 15;
  • снова разбивают на части – 1100+100+30+10+5;
  • в итоге получают 1245.

Таким же образом считают все многозначные числа.

Сложение и вычитание натуральных чисел базируется на правилах:

  1. Если слагаемое увеличивают на какой-то показатель, его вычитают из полученной суммы. Например, (650+346+4) – 4. Решают так: (650+350) – 4 = 1000-4 = 996 или 650+346 = 996, обе 4 здесь «снимают», поскольку +/- одинакового числа дает в сумме 0.
  2. Если к одному слагаемому добавляют показатель, из второго вынимают это же число – сумма не меняется. Например, (350+5)+(240-5) = 340+240 = 580, здесь +/- 5 = 0.

Таким образом всегда решают примеры с простыми числами. Техника поможет, если стоит вопрос, как быстро научиться считать сдачу. Ее легко освоит ребенок, знакомый с первыми простейшими действиями – сложение/вычитание.

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий