Открытие скорости света

Своеобразные частицы – фотоны

Своеобразные частицы – фотоны

Ученые называют фотоны частицами. Но это очень своеобразные частицы. У них нет массы покоя, то есть, в обычном смысле у них нет веса. Трудно себе представить что – то такое реальное, что было бы чистой энергией и не содержало бы ни крупицы вещества. Фотоны и есть такая реальность. Интересно сравнить предельную скорость фотонов с теми скоростями, которые мы привыкли считать большими.

Космический корабль, летящий со скоростью света, для стороннего наблюдателя не имел бы линейных размеров. Возьмем, например, ракету «Пионер», построенную для полетов за пределами Солнечной системы. Так вот, покидая пределы Солнечной системы, «Пионер» имел скорость 60 километров в секунду. Неплохо! Расстояние от Нью-Йорка до Сан-Франциско он мог бы покрыть за полторы минуты. Но в сравнении со скоростью фотона в 300 000 километров в секунду, скорость «Пионера» выглядит просто черепашьей. Или посмотрим, с какой скоростью перемещается в пространстве Солнце.

Зато время, что вы читаете это предложение, Солнце, Земля и прочие восемь планет нашей Солнечной системы несутся вокруг Млечного Пути, как карусельные лошадки, со скоростью 230 километров в секунду (при этом сами-то мы совершенно не замечаем, что летим с такой невероятной скоростью). Но и эта огромная скорость очень мала по сравнению со скоростью света и составляет около одного ее процента.

Как измеряли скорость света?

Самые первые ученые пытались измерить эту величину. Использовались разные методы. В период античности, люди науки считали, что она бесконечная, поэтому невозможно ее измерить. Это мнение осталось надолго, вплоть до 16-17 века. В те времена появились другие ученые, которые предположили, что луч имеет конец, а скорость можно измерить.

Измерение скорости света

Известный астроном из Дании Олаф Рёмер вывел знания о скорости света на новый уровень. Он заметил, что затмение спутника Юпитера опаздывает

Ранее на это никто не обращал внимание. Следовательно, он решил посчитать скорость

Он выдвинул приблизительную скорость, которая была равна около 220 тысячам километров в секунду. Позже за исследования взялся ученый из Англии Джеймс Брэдли. Он хоть и не был прав полностью, но слегка приблизился к текущим результатам исследований.

Через некоторое время большинство ученых заинтересовались этой величиной. В исследованиях принимали участие люди науки из разных стран. Однако до 70-х годов 20 века каких либо грандиозных открытий не было. С 1970-х, когда придумали лазеры и мазеры (квантовые генераторы), ученые провели исследования и получили точную скорость. Текущее значение актуально с 1983 года. Исправляли лишь небольшие погрешности.

Опыт Галилея

Ученый из Италии удивил всех исследователей тех годов простотой и гениальностью своего опыта. Ему удалось провести измерение скорости света с помощью обычных инструментов, которые находились у него под рукой.

Он и его помощник взобрались на соседние холмы, предварительно рассчитав расстояние между ними. Они взяли зажженные фонари, оборудовали их заслонками, которые открывают и закрывают огни. Поочередно, открывая и закрывая свет, они пытались рассчитать скорость света. Галилео и помощник заранее знали, с какой задержкой будут открывать и закрывать свет. Когда один открыл, то же делает и другой.

Однако эксперимент был провальным. Чтобы все получилось, ученым пришлось бы стоять на расстоянии в миллионы километров друг от друга.

Как измеряли скорость света?

Опыт Рёмера и Брэдли

Об этом исследовании уже было кратко написано выше. Это один из самых прогрессивных опытов того времени. Рёмер использовал знания в астрономии для измерения скорости передвижения лучей. Происходило это в 76 году 17 века.

Исследователь наблюдал за Ио (спутником Юпитера) через телескоп. Он обнаружил следующую закономерность: чем больше наша планета удаляется от Юпитера, тем большая задержка в затмении Ио. Самая большая задержка составляла 21-22 минуты.

Предположив, что спутник отдаляется на расстояние равное длине диаметра орбиты, ученый разделил расстояние на время. В результате он получил 214 тысячи километров в секунду. Хоть это исследование считается очень примерным, потому что расстояние было примерным, он приблизился к текущему показателю.

В 18-м веке Джеймс Брэдли дополнил исследование. Для этого он использовал аберрацию — изменение положение космического тела из-за движения Земли вокруг солнца. Джеймс измерил угол аберрации, и, зная скорость движения нашей планеты, он получил значение в 301 тысячу километров в секунду.

Опыт Физо

Исследователи и обычные люди отнеслись скептически к опыту Рёмера и Джеймса Брэдли. Несмотря на это, результаты были самыми близкими к истине и актуальными на протяжении более века. В 19 столетии Арман Физо — ученый из столицы Франции, Парижа, внес вклад в измерение этой величины. Он использовал способ вращающегося затвора. Также, как и Галилео Галилей со своим помошником, Физо не наблюдал за небесными телами, а исследовал в лабораторных условиях.

Опыт Физо

Принцип опыта прост. Луч света был направлен на зеркало. Отражаясь от него, свет проходил через зубцы колеса. Затем попадал на еще одну отражающую поверхность, которая была расположена на расстоянии в 8.6 км. Колесо вращали, увеличивая скорость, пока луч не будет видно в следующем зазоре. После подсчетов, ученый получил результат 313 тыс. км/сек.

Позже исследование повторил французский физик и астроном Леон Фуко, получив результат 298 тыс. км/сек. Самый точный результат на то время. Позже измерения проводились при помощи лазеров и мазеров.

Как измерили скорость света

Рёмер прибыл в Париж. Изучил данные Кассини, затем результаты собственных наблюдений и установил, что время между затмениями Ио уменьшалось, когда Земля приближалась к Юпитеру, и увеличилась когда она от него отдалялась. Это предположение действительно кажется очень логичным, но в то время это было настолько новой и необычной идеей, что принять её было непросто. Кассини и Пикар отказались от этого объяснения. Скорее всего, как раз отсутствие их поддержки привело к тому, что у людей нет нормально документированных результатов трудов Рёмера в этом направлении.

В конце 1676 года Рёмер выступил во французской академии наук, с докладом о своей теории и некоторыми доказательствами из наблюдений. Единственным документом с той презентации, стала статья анонимного репортера во французском научном журнале. К сожалению репортер судя по всему, из выступления ничего не понял. Поэтому статья совсем не точно отражает выступление Рёмера.

Публикация 1676 года в «Journal des Sçavans»

Суть работы конечно же сейчас известна. Оле Рёмер посчитал, что свет должен пролетать радиус орбиты земли примерно за 10-11 минут. Сейчас мы знаем, что это 8,3 минуты. В то время даже расстояние между Солнцем и Землей было известно только с большой погрешностью. Так что в целом, точность всех измерений была не настолько велика, чтобы наличие у света скорости сразу же бросалось в глаза.

Этим и объясняется 25-процентная ошибка в вычислениях Рёмера. Тем не менее, его теория стала довольно быстро набирать сторонников, в том числе самого Исаака Ньютона, который кстати почти ровесник Рёмера. Но окончательно убедились в конечности скорости света, лишь спустя 50 лет. Её измерили другим способом, с помощью аберрации, но это уже другая история.

Сколько идет свет от Солнца до Земли

Скорость света наглядно

Ученые астрофизики в большинстве случаев лишены возможности проводить полноценные эксперименты в лабораториях, как это делают, например, биологи или химики, ввиду масштабов исследуемых процессов. При этом каждому астроному доступен самый большой полигон, на котором постоянно происходят грандиозные испытания — это вся обозримая Вселенная с квазарами, радиопульсарами, черными дырами и прочими любопытными объектами.

Однако самые интересные астрофизические открытия в наши дни выглядят как малопонятные сложные графики, а публика вынуждена довольствоваться обработанными снимками лишь нескольких инструментов, таких как телескоп имени Хаббла

Тем не менее, официальная наука нынче осознает важность медийной деятельности и всячески пытается визуализировать для обывателя процессы, которые невозможно просто представить в голове

Например, сотрудник NASA Джеймс О’Донохью, продемонстрировал скорость света относительно нашей планеты (упразднив в своих расчетах влияние атмосферы) — луч света облетает Землю 7,5 раз всего за одну секунду, каждый раз преодолевая более 40 тысяч километров.

Расстояние до Луны составляет порядка 384 000 километров (в зависимости от текущего расположения объектов) и для его преодоления фотонам потребуется уже 1,22 секунды.

При передаче данных с Марса на Землю со скоростью света в момент максимального сближения планет придется ждать более шести минут, а при среднем удалении время ожидания затянется до получаса.

При этом от «красной планеты» нас отделяет в среднем 254 миллиона км, зонд New Horizons, к примеру, уже отлетел от Земли на 6,64 миллиарда км, а чтобы добраться до ближайшей планеты не Солнечной системы, необходимо пролететь 39,7 триллиона км.

Сверхсветовое движение

Почему ничто не может преодолеть скорость света?

Чему равна скорость света?

При нахождении не в вакууме, на свет влияют различные условия. Вещество, через которое проходят лучи, в том числе. Если без доступа кислорода количество метров в секунду не меняется, то в среде с доступом воздуха значение изменяется.

Свет проходит медленнее через различные материалы, такие как стекло, вода и воздух. Этому явлению дан показатель преломления, чтобы описать, насколько они замедляют движение света. Стекло имеет показатель преломления 1,5, это означает, что свет проходит через него со скоростью около 200 тысяч километров в секунду. Показатель преломления воды равен 1,3, а показатель преломления воздуха — немного больше 1, это означает, что воздух лишь слегка замедляет свет.

Следовательно, после прохождения через воздух или жидкость, скорость замедляется, становится меньшей, чем в вакууме. Например, в различных водоемах скорость передвижения лучей равна 0.75 от быстроты в космосе. Также при стандартном давлении в 1.01 бар, показатель замедляется на 1.5-2%. То есть при земных условиях скорость света варьируется в зависимости от условий окружающей среды.

Для такого явление придумали специальное понятие — рефракция. То есть преломление света. Это широко используется в различных изобретениях. К примеру, рефрактор — телескоп с оптической системой. Также с помощью этого также создают бинокли и другую технику, суть работы которой заключается в использовании оптики.

Телескоп рефрактор – схема

В общем, меньше всего луч поддается рефракции, проходя через обычный воздух. При прохождении через специально созданное оптическое стекло, скорость равняется примерно 195 тысячам километров в секунду. Это практически на 105 тыс км/сек меньше константы.

Сколько световых лет до Марса

Как преодолеть огромное расстояние и сколько лететь к Марсу нам давно известно на практических примерах.

Сколько лететь на красную планету астронавтам-землянам – это уравнение с переменным значением, потому что наша планета и Марс постоянно находятся в движении. Каждая планета устремлена по своей орбите вокруг Солнца. Планеты могут приближаться друг к другу или находиться по разные стороны звезды на предельном удалении. Разумеется, наиболее экономичным для землян решением будет предпринять полёт к Марсу, когда планеты находятся на минимальной дистанции.

Расстояние, которое свет проходит за один год равно 9460,73 миллиардов километров. Минимальное возможное расстояние между Землей и Марсом равно 54,55 млн. км.


0.0000057 световых лет от Земли до Марса

Имея такие данных можно заключить, что минимальное расстояние между двумя планетами – равняется 181 световым секундам, или 3-м световым минутам. Иными словами, между Марсом и Землёй 0.00000570776255707763 световых лет.

Сверхсветовое движение

Из специальной теории относительности следует, что превышение скорости света физическими частицами (массивными или безмассовыми) нарушило бы принцип причинности — в некоторых инерциальных системах отсчёта оказалась бы возможной передача сигналов из будущего в прошлое. Однако теория не исключает для гипотетических частиц, не взаимодействующих с обычными частицами, движение в пространстве-времени со сверхсветовой скоростью.

Гипотетические частицы, движущиеся со сверхсветовой скоростью, называются тахионами. Математически движение тахионов описывается преобразованиями Лоренца как движение частиц с мнимой массой. Чем выше скорость этих частиц, тем меньше энергии они несут, и наоборот, чем ближе их скорость к скорости света, тем больше их энергия — так же, как и энергия обычных частиц, энергия тахионов стремится к бесконечности при приближении к скорости света. Это самое очевидное следствие преобразования Лоренца, не позволяющее массивной частице (как с вещественной, так и с мнимой массой) достичь скорости света — сообщить частице бесконечное количество энергии просто невозможно.

Следует понимать, что, во-первых, тахионы — это класс частиц, а не один вид частиц, и во-вторых, тахионы не нарушают принцип причинности, если они никак не взаимодействуют с обычными частицами.

Обычные частицы, движущиеся медленнее света, называются тардионами. Тардионы не могут достичь скорости света, а только лишь сколь угодно близко подойти к ней, так как при этом их энергия становится неограниченно большой. Все тардионы обладают массой, в отличие от безмассовых частиц, называемых люксонами. Люксоны в вакууме всегда движутся со скоростью света, к ним относятся фотоны, глюоны и гипотетические гравитоны.

В планковской системе единиц скорость света в вакууме равна 1, то есть свет проходит 1 единицу планковской длины за единицу планковского времени.

C 2006 года показано, что в так называемом эффекте квантовой телепортации кажущееся взаимовлияние частиц распространяется быстрее скорости света. Например, в 2008 г. исследовательская группа доктора Николаса Гизена (Nicolas Gisin) из университета Женевы, исследуя разнесённые на 18 км в пространстве запутанные фотонные состояния, показала, что это кажущееся «взаимодействие между частицами осуществляется со скоростью, примерно в сто тысяч раз большей скорости света». Ранее также обсуждался так называемый «» — кажущаяся сверхсветовая скорость при туннельном эффекте. Анализ этих и подобных результатов показывает, что они не могут быть использованы для сверхсветовой передачи какого-либо несущего информацию сообщения или для перемещения вещества.

В результате обработки данных эксперимента OPERA, набранных с 2008 по 2011 год в лаборатории Гран-Сассо совместно с ЦЕРН, было зафиксировано статистически значимое указание на превышение скорости света мюонными нейтрино. Сообщение об этом сопровождалось публикацией в архиве препринтов. Полученные результаты специалисты подвергли сомнению, поскольку они не согласуются не только с теорией относительности, но и с другими экспериментами с нейтрино. В марте 2012 года в том же тоннеле были проведены независимые измерения, и сверхсветовых скоростей нейтрино они не обнаружили. В мае 2012 года OPERA провела ряд контрольных экспериментов и пришла к окончательному выводу, что причиной ошибочного предположения о сверхсветовой скорости стал технический дефект (плохо вставленный разъём оптического кабеля).

Что считает специальная теория относительности?

Другое предположение, взятое за основу в системе СИ – это то, что специальная теория относительности верна. Основным постулатом теории относительности является то, что скорость света постоянна. Данное утверждение распадается на две части:

  • Скорость света не зависит от движения наблюдателя.
  • Скорость света не меняется в зависимости от места или времени.

Мысль о том, что скорость света не зависит от скорости наблюдателя очень противоречит нашим интуитивным представлениям. Некоторые люди вообще отказываются принимать, что это возможно с точки зрения логики, но в 1905 г. Эйнштейну удалось показать, что все совершенно логично, если быть готовым отказаться от предубеждений об абсолютном характере пространства и времени.

В 1879 г. думали, что свет должен распространяться по особой среде, точно так же, как звук распространяется по воздуху и другим веществам. Эту среду называли эфиром. Двое ученых, Майкельсон и Морли, поставили опыт в котором попытались обнаружить эфир, измеряя разницу в скорости света по мере того, как Земля меняет направление своего движения в течение года. К их удивлению, обнаружить различие в скорости света не удалось.

Тогда Фитцджеральд предположил, что причиной тому является сокращение экспериментальной установки при движении сквозь эфир, в точности компенсирующее изменение скорости света. Лоренц далее развил это предположение, добавив к нему замедление хода часов так, чтобы движение эфира оказывалось совершенно ненаблюдаемым. Затем Эйнштейн доказал, что эти искажения можно объяснить искажением самих пространства и времени, а не физических объектов и что, таким образом, абсолютность пространства и времени, введенная Ньютоном, должна быть отвергнута. Сразу после этого математик Минковский показал, что теория относительности Эйнштейна может быть понята как неевклидова геометрия в 4-мерном пространстве-времени.

Окончателная теория не только математически и логически самосогласована, но подтверждается и большим количеством прямых опытов. Опыт Майкельсона и Морли много раз повторяли, со все большей точностью. В 1925 г. Дэйтон Миллер объявил, что он обнаружил-таки изменение скорости светы и он даже был удостоен нескольких наград за это открытие, но проведенная в 1950 г. экспертиза его работы показала, что наиболее вероятно, что причиной обнаруженных им явлений были суточные и годичные изменения температуры установки, то есть, его результаты были признаны ошибочными.

При помощи современного оборудования легко можно было бы обнаружить движение эфира, если бы он существовал. Земля движется вокруг Солнца со скоростью 30 км/с, поэтому, если справедливо векторное сложение скоростей, как этого требует механика Ньютона, то в определении метра в системе СИ последние 5 цифр скорости света были бы бессмысленными. Сегодня в физике высоких энергий в ЦЕРНе и лаборатории Ферми ежедневно ускоряют частицы до скоростей на волосок отличающихся от скорости света. Если бы скорость света зависела бы от скорости системы отсчета, это было бы давно обнаружено, если конечно эта зависимость на самом деле не является ничтожной.

Что такое скорость света своими словами?

История измерений скорости света

Античные учёные, за редким исключением, считали скорость света бесконечной. В Новое время этот вопрос стал предметом дискуссий. Галилей и Гук допускали, что она конечна, хотя и очень велика, в то время как Кеплер, Декарт и Ферма по-прежнему отстаивали бесконечность скорости света.

Первую оценку скорости света дал Олаф Рёмер (). Он заметил, что, когда Земля и Юпитер находятся по разные стороны от Солнца, затмения спутника Юпитера Ио запаздывают по сравнению с расчётами на 22 минуты. Отсюда он получил значение для скорости света около 220 000 км/с — неточное, но близкое к истинному. В 1676 году он сделал сообщение в Академии, но не опубликовал свои результаты в виде формальной научной работы, в результате чего научное сообщество приняло идею о конечной скорости света только в 1727 году.

Спустя полвека, в 1728 году, открытие аберрации позволило Дж. Брэдли подтвердить конечность скорости света и уточнить её оценку: полученное Брэдли значение составило 308 000 км/с.

Впервые измерения скорости света, основанные на определении времени прохождения светом точно измеренного расстояния в земных условиях, выполнил в 1849 году А. И. Л. Физо. В своих экспериментах Физо использовал разработанный им «метод прерываний», при этом расстояние, преодолеваемое светом, составляло 8,63 км. Полученное в результате выполненных измерений значение оказалось равным 313 300 км/с. В дальнейшем метод прерываний значительно усовершенствовали и использовали для измерений М. А. Корню (1876 г.), А. Ж. Перротен (1902 г.) и . Измерения, выполненные Э. Бергштрандом в 1950 году, дали для скорости света значение 299 793,1 км/с, при этом точность измерений была доведена до 0,25 км/с.

Другой лабораторный метод («метод вращающегося зеркала»), идея которого была высказана в 1838 году Ф. Араго, в 1862 году осуществил Леон Фуко. Измеряя малые промежутки времени с помощью вращающегося с большой скоростью (512 об/с) зеркала, он получил для скорости света значение 298 000 км/с с погрешностью 500 км/с. Длина базы в экспериментах Фуко была сравнительно небольшой — двадцать метров. В последующем за счёт совершенствования техники эксперимента, увеличения используемой базы и более точного определения её длины точность измерений с помощью метода вращающегося зеркала была существенно повышена. Так, С. Ньюком в 1891 году получил значение 299 810 км/с с погрешностью 50 км/с, а А. А. Майкельсону в 1926 году удалось понизить погрешность до 4 км/с и получить для скорости величину 299 796 км/с. В своих экспериментах Майкельсон использовал базу, равную 35 373,21 м.

Дальнейший прогресс был связан с появлением мазеров и лазеров, которые отличаются очень высокой стабильностью частоты излучения, что позволило определять скорость света одновременным измерением длины волны и частоты их излучения. В начале 1970-х годов погрешность измерений скорости света приблизилась к 1 м/с. После проверки и согласования результатов, полученных в различных лабораториях, XV Генеральная конференция по мерам и весам в 1975 году рекомендовала использовать в качестве значения скорости света в вакууме величину, равную 299 792 458 м/с, с относительной погрешностью (неопределённостью) 4·10-9, что соответствует абсолютной погрешности 1,2 м/с.

Существенно, что дальнейшее повышение точности измерений стало невозможным в силу обстоятельств принципиального характера: ограничивающим фактором стала величина неопределённости реализации определения метра, действовавшего в то время. Проще говоря, основной вклад в погрешность измерений скорости света вносила погрешность «изготовления» эталона метра, относительное значение которой составляло 4·10-9. Исходя из этого, а также учитывая другие соображения, XVII Генеральная конференция по мерам и весам в 1983 году приняла новое определение метра, положив в его основу рекомендованное ранее значение скорости света и определив метр как расстояние, которое проходит свет в вакууме за промежуток времени, равный 1 / 299 792 458 секунды.

Литература

Астрономические методы нахождения скорости света

У Юпитера имеется несколько спутников, которые можно иногда видеть с нашей планеты около него. Эти спутники периодически уходят в его тень. Наблюдения астрономов привели к выводу, что средний промежуток времени между парой последовательных затмений определенного спутника зависит от того как сблизились (удалились) Земля и Юпитер.

Рисунок 1. Противостояние Земли и Юпитера. Автор24 — интернет-биржа студенческих работ

Первым метод определения скорости света по результатам наблюдения за спутником Юпитера предложил Ремер. Допустим, что в некоторый момент времени Земля (З) и Юпитер (Ю) противостоят друг другу (рис.1). В этот же момент один из спутников Юпитера, который мы должны наблюдать с Земли, пропадает в тени Юпитера. На Земле попадание спутника в тень планеты будет зафиксировано на:

$\Delta t=\frac{R-r}{c}(2)$.

секунд позже, чем он совершал в системе отсчета, если связать ее с Юпитером. $R$ — радиус орбиты Юпитера; $r$ — радиус орбиты Земли; $c$ — скорость света в системе отсчета, которую свяжем с Солнцем ($C$).

По прошествии 0,545 года Земля (З’) и Юпитер (Ю’) попадают в «соединение». Если в данное время произойдет $n$- е затмение рассматриваемого спутника Юпитера, то на Земле оно запоздает на:

$\Delta t^{‘}=\frac{R+r}{c}(3)$ секунд.

Если период обращения спутника вокруг Юпитера равен $t$, то отрезок времени между первым и $n$- затмением, регистрируемым с Земли равен:

$T_{1}=\left( n-1 \right)t+\frac{R+r}{c}-\frac{R-r}{c}=\left( n-1\right)t+\frac{2r}{c}\left( 4 \right)$.

Через 0,545 года Земля (З”) и Юпитер (Ю”) вновь придут в противостояние. В течение этого времени произойдут $n-1$ оборотов спутника Юпитера и $n-1$ затмений, из который первое было, когда земля и Юпитер занимали положения З’ и Ю’, последнее в положении З” и Ю”.

Первое затмение наблюдалось с опозданием $\frac{R+r}{c}$, последнее — $\frac{R-r}{c}$ в отношении ухода спутника в тень Юпитера. В результате имеем:

$T_{2}=\left( n-1 \right)t-\frac{R+r}{c}+\frac{R-r}{c}=\left( n-1\right)t-\frac{2r}{c}\left( 5 \right)$.

Ремер провел измерения времен $T_1$ и $T_2$, получил, что:

$T_1-T_2=1980$ (c).

Считая, что среднее расстояние от Земли до Солнца равно $r=150 ∙(10)^6$ км, получим:

$c=301∙(10)^6$ (м/c).

Данный результат признан первым измерением скорости света.

Еще одним удачным опытом по измерению скорости света считают опыт Брадлея (или Брэдли) (1725 – 1728 гг.). Ученый хотел установить существование годичного параллакса звезд.

Замечание 1

Годичным параллаксом звезд называют кажущееся смещение звезд на небесном своде, которое отражает перемещение Земли по орбите. Это явление связано с конечностью расстояния от нашей планеты до звезды.

Звезда при своем движении должна описывать эллипс, угловые размеры которого связаны с расстоянием до звезды.

Для звезд, находящихся в плоскости эклиптики, данный эллипс вырождается в прямую, для звезд около полюса в окружность. Брэдли увидел данное смещение. При этом большая ось эллипса оказалась для всех звезд имеет одни и угловые размеры (2∝=40″,9), что существенно больше ожидаемого параллактического смещения. Направление наблюдаемого смещения оказалось нормальным к ожидаемому в результате параллакса. Ученый объяснил полученное, явлением, названным им аберрацией света (конечность распространения света).

Замечание 2

Аберрацию света связывают с изменением направления скорости Земли в течение года. Это явление дает возможность судить об изменении скорости Земли.

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий