Источники и зоны радиоактивного заражения — виды излучений, характеристика и последствия

Полигоны

12. «Глобус-1», Галкино, Россия

Координаты: 57°31′00″ с. ш. 42°36′43″ в. д.

Зараженные территории: Ивановская область

Выброс от мирного подземного взрыва проекта «Глобус-1» в 1971 году и сегодня является причиной заражения окружающей территории.

По официальным данным, сегодня уровень фона приближается к допустимому (хотя часть прилегающих территорий и сегодня закрыта).

Однако, кроме этого места, в Подмосковье существует несколько старых радиомогильников, а на западе отмечается повышенный фон, появившийся в результате Чернобыльской аварии.

Если власти признают заражение, придется выплачивать пособия и обеспечивать льготы (включая бесплатное высшее образование).

13. Семипалатинский испытательный полигон, Семипалатинск, Казахстан

Координаты: 50°07′00″ с. ш. 78°43′00″ в. д.

Зараженные территории: Точных данных нет

Огромный полигон для испытания ядерного оружия является закрытой радиоактивной зоной. Как и многие другие аналогичные местности, заражение неравномерно: удивительно, но не каждая воронка от ядерного взрыва сегодня фонит.

Что с того местным жителям и окружающей территории? Большую часть облаков приняла степь и почвы, поэтому появляться в Семипалатинске – ныне Семее – еще опаснее, чем в зоне поражения ЧАЭС.

Где подробная карта заражения?


К сожалению, точной карты зараженных территорий не существует: подробный анализ не выгоден для властей и предприятий. Существование подобных карт с активными зонами приведет к штрафным санкциям и необходимости выплачивать огромные пособия и другие льготы.

Кроме того, радиация характеризуется сложным распространением: даже после аварии на ЧАЭС отмечено, что фон в 2 точках карты на расстоянии 50-200 метров друг от друга может отличаться на несколько порядков. Поэтому обвинять кого бы то ни было в отсутствии точных сведений нельзя. Но и забывать о том, что случайно можно зайти в “горячую” зону – не стоит.

Еще нужно учитывать, что в России огромное число небольших радиоактивных могильников, разбросанных по всем регионам, атомные электростанции, рудники, предприятия по переработке радиоактивных руд. Карта может выглядеть так, но это невероятно скудная версия реального положения вещей:
Здесь не отмечены даже официальные могильники: ввиду высокой секретности, многие из них после развала СССР пропали с карт – специально, или из-за увольнений людей, причастных к ним.

Видишь знак радиационной опасности? Встретил на пути местность, где не растет ничего? Беги оттуда.


iPhones.ru

Читай внимательно: возможно, ты живешь в одном из них.

Инженер-пилотажник/аудитор/физик/музыкант. Просто о сложном, новые тренды и mindful consumption.

Радиоактивное заражение окружающей среды. Характеристика зон радиоактивного заражения

Принято выделять зоны радиоактивного загрязнения по величине возникшей радиации. Умеренного (обозначается синим цветом), сильного (зелёный цвет), опасного (красный цвет), чрезвычайно сильного радиоактивного загрязнения, обозначаемого зловещим чёрным цветом. Характеристику зон радиоактивного заражения определяет количественное значение уровня радиации. В первой зоне радиоактивного заряжения он после взрыва составляет 8 Р/ час. Через 10 часов уровень снижается до 0.5 Р/ час. Значения радиации второй зоны возрастают в 10 раз. В третьей зоне сразу после взрыва фиксируется радиация 240 Р/ час. В четвёртой зоне величина радиоактивного загрязнения среды становится равной 4000 Р/ час.

В заражённой зоне появляются следующие радиоактивные элементы:

  1. Йод-131. Излучает бета, гамма-лучи, наиболее опасные для живых существ. Период полураспада составляет 8 суток. Вызывает гибель, мутацию клеток. Основная концентрация происходит в щитовидной железе.
  2. Стронций-90. Период полураспада длится 29 лет. Опасность представляет для костных тканей. Попадает в окружающую среду во время аварий на АЭС, ядерных взрывах современного оружия.
  3. Цезий-137. Элемент с периодом полураспада 30 лет считается главным компонентом радиоактивного заражения окружающей среды.

Кобальт (период полураспада около 6 лет), америций-241, живущий 433 года, заполняют радиоактивную зону, существующую рядом с человеком. Свойством радиоактивных элементов является создание энергетических лучей, проникающих на разную глубину. Они оказывают на живые клетки разное действие. Альфа излучение задерживается простым листом бумаги, не проникая через кожу человека. Вред оно принесёт только когда радиоактивные вещества, их излучающие, попадут внутрь организма. Это происходит через открытые раны, с пищей, водой, воздухом.  Бета излучение характеризуется большей проникающей способностью. В зависимости от энергетических запасов, оно проходит на глубину около 10 см. Самое страшное гамма-излучение, распространяющееся со скоростью света, могут задержать только мощные бетонные стены и свинец.

Тяжёлыми катастрофами, приведшими к сильному радиоактивному загрязнению среды, считаются авария на Чернобыльской АЭС, японской станции Фукусима, испытания ядерного оружия в городах Японии. Полигон под Семипалатинском, утечка радиоактивных отходов в Челябинской области, секретные полигоны Америки, Кореи. Некоторыё аварии стали достоянием гласности спустя многие годы. Думается, что секретные области с опасностью радиоактивного загрязнения есть и сейчас. Запрещающие знаки, определяющие смертельную зону, ставились везде. Не всегда они решали вопросы безопасности местного населения.

3.4. Проверочные задачи для контроля усвоения материала

1. Для условий задачи №1: t1 = 12.00; Рi =20 рад/ч; t2 = 13.00; Р2 = 14 рад/ч; tввр. = ? Ответ: tввр =9.00.

2. Для условий задачи №2: pi =30 рад/ч ; tH = 3 час; Т = 2 часа; Косл =1; Опр= 20 рад; tnp= 5 недель; DСум= ? Ответ: DСум = 20 рад.

3. Для условий задачи №4: Рmax =100 рад/час; I =15 км; U = =30 км/час; Косл =2; D =? Ответ: D = 6 рад.

4. Для условий задачи №4: tH = 1 час; Рн =30 рад; D зад =30 рад; Косл =1;

Т = ? Ответ: Т =2 часа 03 мин.

5. Комплексная задача по оценке радиационной обстановки:

В районе расположения формирования в загородной зоне в t1 был измерен уровень радиации Р t1, а при повторном измерении в той же точке в t2 до Р t2.

В период времени с t1 до t3 личный состав формирования находился в защитном сооружении с коэффициентом ослабления, равным Косл, после чего выехал на автомобилях в район проведе­ния спасательных работ на открытой радиоактивно зараженной местности.

Скорость движения колонны на зараженной местности — U км/ч, длина маршрута — lкм, максимальный уровень радиации на марш­руте – Рmах, рад/ч. Продолжительность работ — Т, час. n недель тому назад личный состав формирования получил дозу излучения Dпр, рад. Определить суммарную дозу излучения Dcум и возможные радиационные потери, П %. Исходные данные для решения задачи даны в таблице 1 .

Таблица 1.

Исходные данные для 1 и 2 вариантов задачи

NN

пп

t1

Pt1

t2

Pt2

t3

K

Pmax

U

l

T

n

Dпр

1

10.0

50

11.00

30

14.00

10

80

20

10

2

1

10

2

9.30

80

10.00

64

13.00

10

160

20

10

3

2

20

Таблица 2.

Рассчитанные данные для 1 варианта и контрольная величина для 2 варианта

NN

пп

tввр

Р1

Р t3

в t3

c

DM

t4

P t4

Dp

Dост

Dсум

П

1

8.00

115

13

10

5

14.30

12

20

9

44

2

105

Решение задачи (вариант № 1) записать в таблицу 2 и сравнить полученный ответ с приведенным в таблице. Затем для самоконтроля решить вариант № 2, для проверки которого дана только итоговая величина:

Характеристика зон

В зоне А человек получает облучение, которое может составить 40-400 Р. Этот показатель определяется временем пребывания на этой территории людей. Указанная цифра характеризует общее количество радиации, которое воздействует на организм в период полного распада выпавших здесь веществ. Спустя час после взрыва на внешней границе зоны А уровень излучения не превышает 7 Р/ч.

В зоне сильного заражения человек получает облучение 400-1200 Р. При этом на границе между зонами Б и А радиация через час после взрыва составит 80 Р/ч.

В зоне опасного радиоактивного заражения уровень радиации становится очень высоким. Человек, который находится на этом участке, получает дозу облучения 1200-4000 Р. В зоне Г уровень заражения человека радиацией может достигать 10 тыс. Р.

Биологическое заражение

Данный вид заражений обусловлен использованием биологического оружия. Цель — распространение микроорганизмов, вызывающих эпидемии и пандемии тяжелых инфекционных заболеваний: сибирской язвы, чумы, оспы, тифа и т. д. Заражение происходит воздушно-капельным путем, через пищеварительную систему, через кровь и укусы насекомых.

Действия в условиях биологического заражения следующие:

  • немедленное введение карантина на территории, запрет въезда и выезда;
  • профилактические мероприятия — прививки, антибиотики и т. д.;
  • строгое ограничение контактов;
  • соблюдение требований личной гигиены и требований к чистоте помещения;
  • мероприятия по дезинфекции;
  • защита воды и продуктов питания;
  • ведение статистики заболеваний.

Когда очаг заболеваний ликвидирован, проводятся конечные меры по дезинфицированию территории заражения.

В итоге можно сделать следующие выводы:

  • Заражение — это опасное для организма воздействие внешних факторов: микроорганизмов, радиации, химических соединений.
  • Заражение местности бывает радиоактивное, химическое, биологическое.
  • Каждый тип заражения опасен и требует незамедлительных комплексных мер.

Бизнес и финансы

БанкиБогатство и благосостояниеКоррупция(Преступность)МаркетингМенеджментИнвестицииЦенные бумагиУправлениеОткрытые акционерные обществаПроектыДокументыЦенные бумаги — контрольЦенные бумаги — оценкиОблигацииДолгиВалютаНедвижимость(Аренда)ПрофессииРаботаТорговляУслугиФинансыСтрахованиеБюджетФинансовые услугиКредитыКомпанииГосударственные предприятияЭкономикаМакроэкономикаМикроэкономикаНалогиАудитМеталлургияНефтьСельское хозяйствоЭнергетикаАрхитектураИнтерьерПолы и перекрытияПроцесс строительстваСтроительные материалыТеплоизоляцияЭкстерьерОрганизация и управление производством

Загрязняющие радиоактивные компоненты

Радиационное загрязнение состоит компонентов, формирующих опасную среду. У каждого из них собственные физико-химические характеристики, главная из которых – период полураспада. Это срок, показывающий через какое время компонент утратит свои свойства до момента расщепления на части.

Среди компонентов особенно выделяются по степени опасности и сроку полураспада:

НазваниеПериод полураспадаВозможные негативные последствия загрязнения
Америций-241433 годаСмертельная опасность
Цезий-13730 летНакопления в мышечной массе и скелете
Стронций-9028,8 летКостные отложения
Кобальт-605,3 годаТоксичное воздействие на организм
Йод-1318 днейМутации, гибель клеток и тканей.

↑ Характеристика зон заражения

  1. зона А — умеренного заражения (обозначается синим цветом). Человек, находясь в этой зоне, может получить дозу облучения от 40 до 400 Р за время полного распада выпавших в этой зоне радиоактивных веществ. На внешней границе зоны А через 1 ч после взрыва уровень радиации не превышает 8 Р/ч. Личный состав из строя не выходит;
  2. зона Б — сильного заражения (обозначается на карте зеленым цветом). Человек в этой зоне может получить дозу от 400 до 1 200 Р за время полного распада РВ. Уровень радиации на границе с зоной А через 1 ч после взрыва равен 80 Р/ч. 50 % личного состава выходит из строя;
  3. зона В — опасного заражения (обозначается на карте коричневым цветом). Человек, находясь в этой зоне, может получить дозу облучения от 1200 до 4000 Р за время полного распада РВ. Уровень радиации на границе с зоной Б через 1 ч после взрыва равен 240 Р/ч. 100 % личного состава выходит из строя;
  4. зона Г — чрезвычайно опасного заражения (обозначается на карте черным цветом). Человек в этой зоне может получить дозу от 4 000 до 10 000 Р за время полного распада РВ. Уровень радиации на границе с зоной В через 1 ч после взрыва равен 800 Р/ч. 100 % личного состава выходит из строя.

Оценка радиационной обстановки осуществляется двумя методами:

  • прогнозированием;
  • по данным радиационной разведки.

Как правило, в частях и соединениях ориентируются на метод оценки радиационной обстановки по данным разведки. Для этого необходимы следующие исходные данные:

  1. 1) вид, мощность и время взрыва;

  2. 2) уровень радиации на 1 ч после взрыва и места их измерений;

  3. положение, характер действия и задачи подразделений и частей;

  4. степень боеспособности подразделений и частей (полученная личным составом доза облучения).

В дальнейшем оценка радиационной обстановки проводится в следующей последовательности:

  1. приведение уровней радиации на 1 ч после взрыва и определение зоны заражения;

  2. определение радиационных потерь войск в зонах заражения на следе облака;

  3. определение радиационных потерь при преодолении зон заражения на следе облака;

  4. определение допустимой продолжительности пребывания войск в зонах заражения на следе облака;

  5. определение допустимого времени начала преодоления зон заражения на следе облака;

  6. определение степени заражения боевой техники и транспорта на следе облака.

Оценка радиационной обстановки осуществляется с помощью научно разработанных таблиц, графиков, шаблонов, радиационных и дозиметрических линеек.

На территории, зараженной радиоактивными веществами, люди и животные подвергаются ионизирующему облучению. Ионизирующее облучение осуществляется нейтронным, гамма-, бета-, альфа-излучениями.

Обнаружение и измерение ионизирующих излучений называются дозиметрией, а приборы, предназначенные для этих целей, — дозиметрическими приборами (ДП). Дозиметрия основана на свойствах этих излучений изменять физико-химические свойства облучаемой среды. Основным методом дозиметрии, применяемым в войсковой практике, является ионизационный. С помощью дозиметрических приборов производятся 3 основных вида измерения:

  1. измерение уровня радиации на местности, зараженной РВ и определение границ зараженной территории;

  2. измерение степени радиоактивного заражения кожных покровов и обмундирования личного состава, вооружения, боевой техники, транспорта, сооружений и других предметов, а также воды, продовольствия и фуража;

  3. измерение дозы облучения, полученной (накопленной) личным составом при нахождении на зараженной территории или в ядерном очаге.

Для этих целей применяются различные дозиметрические приборы, имеющие общее устройство и принцип работы, но шкала регистрирующего устройства градуирована в различных единицах дозиметрии согласно предназначению прибора.

В зависимости от цели применения дозиметрические приборы классифицируются следующим образом:

  1. приборы, предназначенные для ведения радиационного наблюдения и разведки (ДП-64, ДП-5В, ДП-5А, ДП-63А);

  2. приборы, предназначенные для ведения радиометрического контроля (ДП-5А, ДП-5Б, ДП-5В);

  3. приборы, предназначенные для ведения дозиметрического контроля (ДП-22В, ИД-1, ИД-11, ДП-70ПМ с ПК-56М).

“Внимание! Говорит штаб гражданской обороны!

Граждане! Воздушная тревога!

Отключите свет, газ, воду, погасите огонь в печах. Возьми­те средства индивидуальной защиты, документы, запас про­дуктов и воды.

Укройтесь в защитном сооружении или в складках местнос­ти.

Соблюдайте спокойствие и порядок. Будьте внимательны к сообщениям штаба ГО”.

При миновании воздушной опасности:

Пример текста:

“Внимание! Говорит штаб гражданской обороны! Отбой воздушной тревоги!”

Действия по сигналам оповещения ГО

Дома: быстро собраться и уйти в убежище, укрытие. Выклю­чить осветительные и нагревательные приборы, перекрыть воду, газ, взять документы, деньги, запас продуктов и воды, тёп­лые вещи, средства индивидуальной защиты. Оповестить со­седей.

На работе: выключить оборудование, прекратить работу и уйти в убежище или укрытие.

На открытой местности: надеть средства защиты ор­ганов дыхания. Укрыться в складках местности. Выйти из убежища или укрытия и возвратиться к своим делам, нахо­диться в готовности к защите от возможного повторного напа­дения противника. Всегда иметь при себе средства индивиду­альной защиты.

Сигналы оповещения ГО и способы их передачи.

При угрозе радиоактивного заражения:

Пример текста:

“Внимание! Говорит штаб гражданской обороны! Граждане! Возникла угроза радиоактивного заражения!” “Приведите в готовность средства индивидуальной защи­ты. Держите их постоянно при себе

По команде штаба ГО на­деньте их. Проверьте герметизацию жилых помещений, состо­яние окон, дверей. Загерметизируйте продукты питания и соз­дайте в ёмкостях запас воды. Оповестите соседей. Действуйте в соответствии с указаниями штабаГО”.

При угрозе химического заражения:

Порядок оповещения как при угрозе радиоактивного зара­жения.

Действия по сигналам ГО

Надеть ватно-марлевую повязку, респиратор или противо­газ. Закрыть окна и двери, укрыть запасы продовольствия и воды, укрыться в убежищах или укрытиях; не покидать убе­жища и укрытия до особого распоряжения штаба ГО. При на­хождении вне укрытия на заражённой местности принять радиозащитные средства № I из аптечки АИ-2 (6 табл. из разо­вого восьмигранного пенала). Строго соблюдать режимы поведения, установленные штабом ГО. Немедленно надеть противогаз, средства защиты кожи, укрыться в защитном сооружении. На местности при появлении признаков поражения принять антидот (средство против ВОФ) из аптечки АИ-2 (одну табл. из красного круглого пенала). При попадании капель ОВ на кожу или одежду эти участки обрабатывать раствором из ин­дивидуального противохимического пакета ИПП-8, после вы­хода из очага химического заражения необходимо пройти санобработку, одежду сдать на дегазацию, противогазы сни­мать по распоряжению штаба гражданской обороны.

Что такое радиация

Открытие радиоактивности связано с работами лауреата Нобелевской премии по физике немецкого учёного Вильгельма Рентгена, французского физика Беккереля. Исследователи изучали строение атома, процессы, происходящие внутри химических элементов. Термин радиоактивность, обозначающий превращение ядер в иные ядра, сопровождающийся излучением, введён Марией Кюри. При распаде определённых элементов, называемых радионуклидами, появляются разные частицы, отличающиеся запасом энергии. Поток таких частиц назвали радиацией.

Человек каждый день сталкивается с действием радиоактивного излучения, образующегося в природных условиях из элементов, входящих в структуру земли. Вода, воздух, почва содержат около 60 видов веществ, создающих естественный фон ионизирующего излучения. Например, радон, образующийся в почве, в глубоких артезианских скважинах, горных породах. Он считается важным источником вредного излучения. Лучи из космоса, создающие на больших высотах опасный уровень радиации. Максимальный процент радиации поступает из источников, созданных человеком. Это диагностика современным медицинским оборудованием, системы получения ядерной энергии, испытание разрушительного оружия. С точки зрения появления случаев воздействия вредным излучением существуют следующие варианты:

  1. Запланированное, строго регламентированное воздействие во время диагностики заболеваний на медицинском оборудовании.
  2. Воздействие известных источников радиации естественного происхождения. Например, в жилье, у рабочих мест за счёт использования конкретных строительных материалов, специальных приборов, фонового излучения окружающей среды. Всегда предусматриваются специальные меры контроля, защиты.
  3. Воздействие в случае чрезвычайных происшествий при ядерных катастрофах, зло направленных действий, являющихся причиной радиоактивного заражения местности. Благодаря таким событиям и появился на нашей планете предупреждающий знак: опасная зона, радиация.

Справочная информация

ДокументыЗаконыИзвещенияУтверждения документовДоговораЗапросы предложенийТехнические заданияПланы развитияДокументоведениеАналитикаМероприятияКонкурсыИтогиАдминистрации городовПриказыКонтрактыВыполнение работПротоколы рассмотрения заявокАукционыПроектыПротоколыБюджетные организацииМуниципалитетыРайоныОбразованияПрограммыОтчетыпо упоминаниямДокументная базаЦенные бумагиПоложенияФинансовые документыПостановленияРубрикатор по темамФинансыгорода Российской Федерациирегионыпо точным датамРегламентыТерминыНаучная терминологияФинансоваяЭкономическаяВремяДаты2015 год2016 годДокументы в финансовой сферев инвестиционной

2.1.5. Описание режимов защиты.

Графа 1 – наименование зон радиоактивного заражения.

Графа 2 – : мощность дозы ионизирующих излучений на 1 час после ядерного взрыва.

Графа 3 – условное наименование режима.

Графа 4 – общая продолжительность соблюдения режима, в сутках.

Графа 5-6 – укрытие населения в ПРУ.

Поскольку непрерывное пребывание в противорадиационных укрытиях в течение длительного времени (несколько суток) весьма затруднительно, в режимах защиты предусматривается кратковременный выход людей из ПРУ на открытую местность. Поэтому в графе 5 показана общая продолжительность пребывания людей в ПРУ, а в графе 6 – время и продолжительность кратковременного выхода из ПРУ.

Графы 7-10 (типовые режимы №1, 2) – последующее укрытие населения в домах и ПРУ, в том числе в графе 7 указывается общая продолжительность соблюдения режима (в сутках) с частным использованием для защиты ПРУ, а в графах 8, 9, 10 – указано время пребывания в домах, ПРУ и на открытой местности (в часах) в течение каждых суток.

Графы 7,8,9 (типовой режим №3) – последующее укрытие населения в домах, в том числе в графе 7 указывается общая продолжительность пребывания в домах, а в графах 8, 9 – время пребывания в домах и на открытой местности в течение каждых суток.

Графа II (типовые режимы №1, 2) – продолжительность проживания населения в домах с кратковременным выходом людей на открытую местность до 1-2 часов в сутки.

2.2. Режимы радиационной защиты рабочих и служащих объектов экономики.

2.2.1. Типовые режимы №4, 5, 6, 7 (приложение 4-7) используются на объектах экономики, продолжающих производственную деятельность в военное время. Режимы защиты разработаны с учетом работы объекта в одну или две смены. Продолжительность работы каждой смены 10-12 часов.

Учитывая неравномерный характер спада мощности дозы ионизирующего излучения и неодинаковую скорость накопления доз облучения, особенно в первые сутки после выпадения радиоактивных веществ, продолжительность работы первой смены может быть меньше 10-12 часов.

2.2.2. При разработке типовых режимов защиты №4-7 учитывались дозы облучения за время пребывания рабочих и служащих в ПРУ, производственных, административных и жилых зданиях, а также при передвижении из мест отдыха в цеха.

2.2.3. Режимы защиты рабочих и служащих объектов экономики включают три основных этапа, которые должны выполняться в строгой последовательности:

I – продолжительность прекращения работы объекта (время непрерывного пребывания людей в защитных сооружениях).

II – продолжительность работы объектов с использованием для отдыха защитных сооружений.

III – продолжительность работы объектов с ограничением пребывания людей на открытой местности.

Учитывая наличие на объектах экономики противорадиационных укрытий с различными коэффициентами ослабления радиоактивных излучений, режимы разработаны для Косл.=20-50, Косл.=50-100, Косл.=100-200, Косл.=1000.

Карты загрязнения России

Радиация, высвободившаяся из четвертого реакторного блока ЧАЭС, на карте России охватила территорию более 60 000 квадратных километров. Радиоактивному загрязнению были подвержены 16 областей и республика Молдова, население которой на тот момент было около 3 миллионов человек. Наибольшее количество радиации получили области, которые находились севернее от границы Украины, на расстоянии 100-550 км от источника. На карте можно увидеть красные и оранжевые пятна, окрасившие такие территории России как: Брянская, Орловская, Тульская, Калужская области. По данным ученых, в этих областях более всего распространился элемент Цезий-137.

Брянская область

Брянская область считается наиболее пострадавшей в Российской Федерации. Область загрязнения здесь простирается на 12,1 тысячу квадратных километров. Содержание в почве радиоизотопов – 15-40 Ки/км. кв., в то время как в зоне отчуждения более 40 Ки/км. кв.

По прогнозам Росгидрометра, на территории уровень радиоактивного заражения местности изотопами Цезия-137 снизится до приемлемого значения в 5 Ки/км. кв. не раньше 2029 года. А значение в 1 Ки/км. кв. Будет достигнуто не ранее 2098 года.

Стоит также отметить, что в западной части Брянской области находится максимальный уровень загрязнения Стронцием-90 и Плутонием-239, 240.

Орловская область

Из-за разрушения реактора на ЧАЭС пострадала огромная территория Советского Союза, в том числе и Орловская область. Повышенный уровень радиационного фона был зафиксирован 30 апреля 1986 года в Болховском и Дмитровском районах, включая город Орел. 1243 человека из Орловской области принимали участие в ликвидации аварии на ЧАЭС. Из них 43% стали инвалидами 1, 2, 3 группы, а 9% в течение 14 лет после этих событий умерли, если быть точнее, то 115 человек. Орловская область занимает третье место по загрязнению радиационными изотопами вследствие аварии на Чернобыльской атомной электростанции.

Тульская область

Согласно исследованиям ученых, почвенный слой Тульской области очистится от вредных веществ не ранее 2050 года. Содержание здесь Цезия-137 даже спустя более 30 лет остается на высоком уровне, и достигает от 1 до 5 кг/км. кв. Самые зараженные города Тульской области следующие: Узловая, Белев, Новомосковск, Пловск, Богородицк и Чернь. Общая площадь радиоактивного загрязнения всей области равняется 14,5 тысячи квадратных километра, а состояние примерно третей части почвы является катастрофическим.

Невзирая на сложную экологическую обстановку в целом регионе, Тульская область остается лидирующей среди созданных на ее территории экологических поселений.

Калужская область

С 28 на 29 апреля 1986 года, через два дня после взрыва на Чернобыльской атомной электростанции, прошли ливневые дожди на юго-западной территории Калужской области, которые принесли с собой опасные радионуклиды. Десять районов Калужской области попали под Чернобыльское радиационное облако, в нем содержались несколько основных радиоактивных элементов: Цезий-137, Цезий-134, Йод-131 и Стронций-90. Площадь загрязнения цезием достигает 11,7 км. кв. В ликвидации последствий аварии принимало участие около 5 тысяч человек, сегодня 3 тысячи из них остались в живых, а 500 стали инвалидами.

Благодаря естественным процессам самоочищения, в данное время радиационная обстановка уже существенно улучшилась. Средние годовые дозы облучения для большинства загрязненных населенных пунктов территории Калужской области снизилась.

Катастрофа, произошедшая в Чернобыле весной 1986 года, перевернула сознание людей, повлияв на историю человечества в целом. На территории ЧАЭС запечатлена картина крупномасштабной экологической катастрофы, последствия которой еще на протяжении многих лет будут оставлять свой отпечаток.

Чернобыльская зона отчуждения – это место событий, которое своим примером напоминает всему миру о том, насколько могут быть плачевными последствия, если пренебрегать техникой безопасности.

Интересные факты о радиации

  • Элемент, открытый в первых рядах радиоактивных веществ, супругами Кюри, назван радий, что означает «испускающий, излучающий лучи».
  • Курильщик за год получает дозу радиации, полученную от 250 снимков на рентгеновском аппарате.
  • Самым радиоактивным продуктом считаются бразильские орехи. Корни деревьев доходят до глубоких слоёв земли, содержащих радиоактивный калий. Для людей доза опасности не представляет.
  • В заражённой зоне Чернобыля появился особый вид живых организмов, развивающихся в атмосфере радиации.
  • Неизвестное действие радиации на здоровье человека еще в начале XX века родило моду на изготовления многочисленных предметов, содержащих радиоактивные элементы. Косметика, сигареты, вода, продукты питания, посуда, циферблаты часов содержали опасные вещества. Радий добавлялся даже в зубную пасту, мыло.

Удивительные открытия физиков реализовались в проектах, технологиях, которые не всегда безопасны. Весь мир должен внимательно следить за их ходом.

Радиационный контроль

В России осуществляется документальный и инструментальный радиационный контроль. В законодательной сфере определены основные положения, позволяющие предотвратить заражение радиоактивными частицами:

  • использование инновационных методов в производстве;
  • безопасность в обращении с отходами;
  • санитарная защита.

Инструментальный контроль с помощью дозиметрических замеров проводит Министерство по чрезвычайным ситуациям. В случае подозрения на превышение допустимых норм, необходимо обратиться в местное отделение МЧС, запросив проведение замера радиационного фона.

3.3
3
голоса

Рейтинг статьи

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий