Приемы быстрого счета без калькулятора

Как считать чаевые в процентах

Быстрое определение суммы чаевых – обязательная мера в кафе или ресторане

Иногда в заведениях общепита уже заложены чаевые и тут важно быстро считать, чтобы пользователя не обманули

Например, вычисление 7% от 300 делают так:

  • раскладывают большое число на сотни;
  • из каждой 100 считают 7%, это 7;
  • складывают количество высчитанных процентов по количеству сотен = 7+7+7 = 21.

Итого 7% от 300 = 21. Точно таким же образом считают все проценты. Поняв, что 1% из 100 равен 1, легко вычислить необходимую сумму выплат. Например, 5% от суммы чека в 1650 рублей составят: (5% от 1000 = 50) + (5% от 600 = 30) + (5% из 50 = 2,5) = 50+30+2,5 = 82,5 рубля. Итого сверх суммы обеда чаевые полагаются не более 82,5 руб.

Вот и все премудрости. Зная их, взрослый никогда не ошибется в сдаче на кассе, рынке. Также будет просто объяснить правила математики малышу.

Как ребенку научиться быстро считать в уме:

  • тренироваться каждый день вместе с родителями;
  • считать собственные деньги, затраты.

Тут многое делают родители, отправляя ребенка в магазин и поручая считать сдачу. Быстрее всего учатся считать на деньгах. И именно эти знания затем пригодятся в жизни.

«Каша из топора»

Польза устного счета

Люди — не железные роботы, но тот факт, что они создают умные машины, говорит об их интеллектуальном превосходстве. Человеку нужно постоянно держать в тонусе свой мозг, чему активно способствует тренировка навыка счета в уме.

Для повседневной жизни:

  • успешный устный счет — показатель аналитического склада ума;
  • регулярный счет в уме убережет вас от раннего слабоумия и старческого маразма;
  • ваше умение хорошо складывать и вычитать не позволит вас обмануть в магазине.

Для успешной учебы:

активизируется мыслительная деятельность;

, речь, внимание, способность воспринимать сказанное на слух, быстрота реакции, сообразительность, умение отыскивать наиболее рациональные пути для решения поставленной задачи;
укрепляется уверенность в своих возможностях.

Что такое математика в уме – устный счет?

Устный счет – это умение с помощью математики проводить вычисления в своей голове. К сожалению, хорошо считать в уме могут не все. Но это не означает, что устному счету нельзя научиться. Нет, это, конечно, не означает, что вы, если вам не дано, сможете почти мгновенно вычислить в уме, сколько будет 8974387 x 396. Но в какой-то мере вы все же можете улучшить свои навыки устного счета. Так что же такое математика в уме ? 

Как мы уже сказали, устный счет – это вычисления без калькулятора и использования бумаги . Весь устный счет происходит в вашей голове. Чтобы научиться хорошо считать в уме, необходимо развивать в себе этот навык и постоянно тренироваться. Увы, без тренировок вы вряд ли сможете удивить кого-то своим умением считать большие числа в уме. 

Название приложения

Способ первый. Для ленивых

Обладатели устройств на платформе Andorod и IOS могут скачать развивающие приложения и игры. Нейробиологи советуют комплексно подходить к быстрому счету в уме. Обучение происходит в несколько этапов, описанных ниже:

  1. Загружаются приложения для развития внимания, концентрации т. п.
  2. Затем пользователь скачивает развивалки для памяти.

В первом действии человек подготавливает свой мозг, так сказать, разогревает его для усиленных занятий. После чего приступает к работе над счетом в уме

Обратите внимание, приложения должны легко регулироваться, как снижение или повышение уровня сложности заданий, так и изменение времени на работу над ним

Большой толковый словарь

УМ, -а; м. 1. Умение человека последовательно мыслить, способность познавать, постигать что-л. Тонкий, критический, глубокий, пытливый ум. Ум человека, ребёнка. Ум учёного, инженера. Ограниченность ума. Упражнять ум. Обнаружить где-л. свой ум. Набираться ума. // Развитая способность логически думать. Природный ум кого-л. Отличаться умом. Обнаружить высокий ум. Человек с умом. Много слышать об уме кого-л. Восхищаться умом кого-л. 2. Сознание, рассудок. Держать в уме много сведений. В уме появилась мысль какая-л., о чём-л. Прикинуть в уме расходы на ремонт. Умом что-л. понимает, а сердцем принять не может. Предстоящее испытание было на уме всё время (имелось в мыслях). Быстро считать в уме (мысленно, не пользуясь записями). // Здравый смысл, нормальное состояние сознания, рассудка. Никогда не терять ума. Быть в здравом уме. Проявить обыкновенный ум. Делать что-л. с умом (разумно, основываясь на здравом смысле). Ум помутился (об утрате здравого смысла). Помутиться в уме (потерять ясность мыслей). 3. О человеке с точки зрения его умственных, интеллектуальных способностей. Лучшие умы человечества. Пушкин — блестящий ум России. Кто-л. был государственным умом. // Разг. О человеке, проявившем в каком-л. деле свои умственные способности, знания. Умом лаборатории был её руководитель. 4. обычно мн.: умы, -ов. Общество как совокупность личностей, имеющих определённые воззрения, настроения, интересы и т.п. Настроение умов. Брожение в умах. Утвердиться в умах. Поразить умы новым известием. 5. обычно ед. Воззрения, настроение, интерес и т.п., свойственный какому-л. обществу. Живой русский ум. Приспособиться к рассудительному крестьянскому уму. Трудно понять ум монархиста. Без ума (быть) от кого-чего. В восторге, в восхищении от кого-, чего-л. Короткий ум; ум короток (см. Короткий). Задним умом крепок (см. Задний). Жить своим умом; жить чужим умом (см. Жить). Ум за разум зашёл (заходит) у кого. О состоянии, при котором кто-л. не может разумно рассуждать, действовать. Ума не приложу. Не знаю, не могу понять. Ума палата у кого (см. Палата). Ума (уму) помрачненье (см. Помрачнение). Уму непостижимо. Совершенно непонятно. Уму-разуму учить. Учить, как следует поступать, жить. Раскинуть умом (см. Раскинуть). Лишиться (решиться) ума. Сойти с ума. Набраться ума (см. Набраться). Любить без ума. Любить очень сильно. Помешаться (повредиться) в уме. Сойти с ума (1 зн.). Взяться (или схватиться, хватиться) за ум. Стать благоразумнее, рассудительнее, образумиться. Выжить из ума (см. 3. Выжить). Выйти из ума (см. Выйти). Держать в уме что. Помнить, сохранять в памяти. Мешаться в уме; мешаться умом. Сходить с ума. Навести на ум (см. Навести). Наставить на ум (на ум-разум); наставить уму-разуму. Вразумить, образумить. Прийти (взбрести и т.п.) на ум (в ум) кому. 1. (что). Представиться, вспомниться. -2. (с инф.). О появлении желания, намерения сделать что-л. Свести с ума кого. 1. Довести до сумасшествия, до потери рассудка. -2. Увлечь, очаровать. Сойти (спятить, свихнуться и т.п.) с ума. 1. Потерять рассудок, стать помешанным, сумасшедшим. -2. О ком-л. поступающем необдуманно, говорящем нелепости. В своём (здравом) уме. Будучи совершенно здоровым, психически вполне нормальным. И в уме нет (не было) у кого. Кто-л. и не думал, не предполагал. Из ума вон у кого. Кто-л. забыл, запамятовал. Из ума не идти; на ум ничего не идёт кому что (см. Идти). Не в своём уме. О ненормальном, помешанном человеке. Не моего (твоего, нашего и т.п.) ума дело. Я ничего не понимаю, меня это не касается. От большого ума; с большого ума (сделать что). Ирон. По глупости, сдуру. Себе на уме кто (см. Себя). С ума сойти! в зн. межд. Восклицание, выражающее сильное удивление, восхищение и т.п. Умишко (см.).

Умножение на 11

Чтобы умножить любое двузначное число на 11, нужно между первой и второй цифрой умножаемого числа вписать сумму первой и второй цифры. Например: 23*11, пишем 2 и 3, а между ними ставим сумму (2+3). Или короче, что 23*11= 2 (2+3) 3 = 253.

Если сумма чисел в центре дает результат больше 10, тогда добавляем единицу к первой цифре, а вместо второй цифры пишем сумму цифр умножаемого числа минус 10. Например: 29*11 = 2 (2+9) 9 = 2 (11) 9 = 319.

Умножать на 11 таким способом можно любые двузначные числа. Для наглядности приведены примеры:

81 * 11 = 8 (8+1) 1 = 891

68 * 11 = 6 (6+8) 8 = 748

Быстро умножать на 11 устно можно не только двузначные числа, но и любые другие числа — об этом читайте в данной статье, а также в книге «Система быстрого счета по Трахтенбергу».

Словарь синонимов

Ум, разум, рассудок, смысл, догадливость, догадка, сметка, гений. Ума палата (да разума маловато). Лоб широк, да мозгу мало (погов.). У него не стало мозгу на это дело. И в становые пристава, и в непременные члены, а может быть и в исправники — всюду пройти можно, — был бы царь в голове (т. е. ум). Салт. Ср. Догадливость.Л быть без ума от кого-либо, быть в уме, быть на уме, быть не в своем уме, быть себе на уме, взбрести на ум, в здравом уме и твердой памяти, взяться за ум, взять умом, войти в ум, в полном уме, в своем уме, вспасть на ум, выжить из ума, держать на уме, дойти собственным умом, иметь недоброе на уме, иметь худое на уме, крепок задним умом, лишиться ума, нейти с ума, обладающий быстрым умом, обладающий живым умом, обнять умом, охватить умом, повредиться в уме, прийти на ум, раскидывать умом, свести с ума, себе на уме, спятить с ума, с умом, схватить умом, сходить с ума, учить уму-разуму, что на уме, то и на языке

Дальше — интереснее!

Полезен ли устный счет?

Наш ответ – однозначно да. Развивая свой навык математического счета в уме, вы развиваете свой мозг, свою память и логику. А научившись хорошо считать в уме, вы вдобавок станете более остроумным. Но главное – вы избавитесь от вашей зависимости считать даже маленькие числа на калькуляторе. Согласитесь, разве вам не приятно поймать себя на мысли, когда вы будете тянуться к калькулятору: «Подожди, мне это не нужно!» и далее найти ответ в своей голове? 

К счастью, помимо развития подобного навыка за счет постоянных тренингов, существуют некоторые математические приемы, которые ускоряют и упрощают ваши вычисления в уме. Но также помните, что некоторые математические задачи все-таки было бы глупо не решать с помощью калькулятора. Так что все зависит от того, что именно вы хотите посчитать. 

Книги и отсутствие калькулятора тренируют ваш мозг

Чтобы как можно быстрее научиться вести вычислительную деятельность устно, нужно постоянно закалять свой мозг новой информацией. Но как научиться быстро считать в уме за короткое время? Тренировать память можно только полезными книгами, благодаря которым универсальной будет не только работа вашего мозга, но и, как бонус, – улучшение памяти и получение полезных знаний. Но чтение книг — это не предел тренировок. Только когда вы сможете забыть о калькуляторе, ваш мозг начнет быстрее перерабатывать информацию. Старайтесь считать в уме при любом случае, продумывайте сложные математические примеры. Но если вам тяжело все это делать самостоятельно, то заручитесь поддержкой профессионала, который быстро вас всему научит.

Правила подсчета

Существует несколько правил устного подсчета, которые помогут облегчить это дело. Так, для начала можно воспользоваться легким способом умножения двухзначных чисел на 11. Это сделать очень просто, зная одну хитрость. Так, для примера можно взять число 69 и умножить его  11. Нужно в уме представить, что между 6 и 9 свободное место. Теперь нужно посчитать, какая сумма этих двух цифр получится. Если это однозначное число, то его мысленно нужно поместить между двумя числами. Если же это двухзначное значение, как в нашем примере, то нужно вставить в пустое место между числами только вторую цифру. Первую при этом следует добавить к первой цифре множителя. Таким образом, получается, что 6+9=15, а значит, что между ними будет стоять 5. В итоге получается 659. Теперь добавляем оставшуюся от 15 единицу к 6  и получаем, что 69 умноженное на 11 будет 759. Это может показаться сложным, учитывая, что считать нужно в уме, но всего несколько тренировок и вы сможете быстро справляться с подобными задачами.

Есть еще один несложный способ, с помощью которого можно умножать числа на 11. Для этого понадобиться умножать любое нужное число на 10, а после этого прибавлять к нему еще одно исходное значение. В примере с тем же числом 69 получится так: 69 мы умножаем на 10 и получаем 690. Теперь к нему прибавляем исходное значение, т.е. 69 и получаем такой же ответ 759.

Еще одна хитрость и легкое правило позволит вам быстро освоить умножение любых чисел на 4. Вам нужно лишь умножить любое число на 2, что не составит особого труда, а затем еще один раз на 2. Это гораздо легче, чем сразу умножать какую-либо цифру на 4.

Есть простое правило, помогающее считать в уме проценты. Можно научиться с легкостью высчитывать 15 % от любого числа. Чтобы это сделать нужно сначала взять 10 % от числа, осуществив деление его на 10. После этого следует добавить еще половину от того, что получилось. Чтобы легче было разобраться, можно рассмотреть это на примере. Так, чтобы определить 15 % от 490, нужно просчитать в уме несколько действий: 490 разделить на 10, из чего получится 49. Это и будет 10 %. Дальше 49 следует разделить на пополам, из чего выходит 24,5 и прибавить их к тем же 10%, то есть к 49. В итоге получаем 24,5+49=73,5. Именно это значение будет составлять 15 % от числа 490.

Не каждый сможет осуществить такие математические действия в уме сразу, поэтому нужно как можно больше тренироваться. Сначала можно решать подобные задачки на бумаге, а со временем выработаются навыки и быстрого устного счета.

Подобных «хитрых» приемов существует довольно много. С их помощью осуществлять сложные математические операции в уме будет гораздо легче. Следует знать хотя бы основные из них,  чтобы можно было освоить устный счет.

Эффективные методики обучения счёту в уме

Обучение ребёнка устному счёту – очень важная вещь в процессе развития детей. В этом могут помочь различные программы:

  • Методика Полякова. Сергей Поляков, советский и российский инженер, посвятил более 10 лет тому, чтобы как можно раньше обучить детей техникам чтения и счёта. Его способ состоит в том, что сначала учат ребят считать до десяти и просят их запомнить итоги всех вариаций на плюс и минус. То есть, отрабатываем действия. Затем дошкольники учатся складывать и вычитать в уме двузначные числа. В данном случае им необходимо понять и запомнить способы, как складывать и вычитать в других десятках.
  • Программа Монтессори. Мария Монтессори, первая в Италии женщина-врач и педагог, много лет посвятила системе обучения детей. Данная программа основывается на эмпирических и игровых формах работы с детьми. Материалы, которые используются в обучении, должны быть удобны в применении и иметь яркие картинки, чтобы ребёнку нравилось заниматься. Также детям необходимо на практике применять полученные знания.
  • Ментальная арифметика – логически продуманная, эффективная методика обучения быстрому устному счету является ментальная арифметика. Занятия можно начинать в дошкольном возрасте, когда мозг гибкий, способный к образованию новых нейронных связей.

Для обучения ментальной арифметике используется абакус – древние счёты. Первые тренировки – это умение производить действия, используя костяшки. Последующие – отказ от реального счётного инструмента, замена его ментальной картинкой. Преподаватели учат работать два полушария мозга одновременно.

Мысленная визуализация вычислений – эффективный тренажёр, дающий поразительные результаты

Дети осваивают навык быстрого устного счёта в уме, учатся концентрировать внимание, овладевают специальными алгоритмами вычислений, которые впоследствии рационально используют в нужный момент

Приемы устного счета

Признаки делимости чисел:

  • на 2: все, что превышают его, и в числовом ряду идут через одно;
  • на 3 и 9: если сумма цифр кратна этим показателям без остатка;
  • на 4: если две последние цифры в записи последовательно образуют число, которое подвергается делению на 4;
  • на 5: круглые десятки и те, где на конце стоит 5;
  • на 6: делятся числа, которые кратны двойке и тройке;
  • на 10: числовые значения, в записи которых на конце стоит 0;
  • на 12: делятся числа, которые можно разделить на тройку и четверку одновременно;
  • на 15: числа, которые делятся одновременно на целые однозначные составляющие это число множители.

Виды

На уроках на устный счет отводится мизерное время, но это не умаляет его значения для развития мыслительной деятельности ребят. Навыки устных вычислений формируются на уроках математики в начальной школе при выполнении разнообразных видов заданий и упражнений.

Найти значение математического выражения

Это могут быть обычные числовые выражения или выражения с переменной (буквенные), а для букв предлагаются числовые значения. Подставляя числа вместо букв, находят числовое значение полученного выражения.

Сравнить математические выражения

Подобные задания отличаются вариативностью:

  • определить равенство либо неравенство двух данных выражений (предварительно найдя и сравнив их значения);
  • к заданным знаку отношению и одному из выражений составить второе выражение или дополнить незаконченное предложенное;
  • в таких упражнениях в выражениях могут использоваться однозначные, двузначные, трехзначные числа и величины и все четыре арифметических действия. Главное назначение подобных заданий — прочное усвоение теоретического материала и отработка вычислительных навыков.

  • Решить уравнения. Они помогают усвоить связи между компонентами и результатами арифметических действий.
  • Решить задачу. Это могут быть и простые и составные задачи. С их помощью укрепляются теоретические знания, вырабатываются вычислительные умения и навыки, активизируется мыслительная деятельность детей.

Навыки устного счета

Навыки устного счета бывают разными и перед тем как идти дальше ответьте, пожалуйста, на несколько вопросов:

  1. Хотите научиться быстро считать в уме?
  2. С какой целью Вы хотите научиться быстро считать?
  3. Как часто Вы пользуетесь калькулятором?
  4. Вам всегда удобно пользоваться калькулятором?
  5. Сколько времени вы тратите на то, чтобы его найти или запустить на своем телефоне/компьютере?
  6. Вы бы стали учиться считать быстро для своего интеллектуального развития?
  7. Вы хотите быстро считать сдачу в магазине?
  8. Вам часто требуется производить сложные математические действия?
  9. Вы не хотите каждый раз напрягаться, чтобы что-нибудь сосчитать в уме?
  10. Вас интересует комплексное или узкоспециализированное развитие интеллекта?
  11. Вы хотите стать гением или просто расширить кругозор? 🙂

Это были вопросы для размышления. Они помогают не только вовлечь Вас в процесс, показать альтернативные варианты, когда навыки быстрого счета бывают очень нужны. Подумайте, возможно Вы найдете еще плюсы, того какую пользу еще может принести этот математический навык.

Если Вы ответили «Да» хотя бы на один из вопросов, то надеюсь, что Вы научитесь лучше считать в уме.

Сколько стоит и кто покупает

Хитрости подсчета

Облегчить подсчет в уме поможет использование специальных правил. Например, существует легкий способ, как умножить любое двузначное число на 11. К примеру, необходимо умножить 79 на 11. Необходимо в уме представить свободное место между цифрами 7 и 9. В нем нужно расположить сумму этих двух цифр, если она представляет собой однозначное число. Если в сумме получается двузначное (в данном примере 7+9=16), между цифрами, составляющими множитель необходимо поставить только вторую цифру (7_6_9). Далее, к первой цифре множителя нужно добавить единицу (7+1=8). В итоге получится 869 – произведение чисел 79 и 11. 

Еще более простая техника умножения чисел на 4. Для этого просто следует умножить число на 2, потом еще раз на 2.

Существует очень простая техника того, как считать проценты в уме. Так, например, очень легко определить 15% от какого либо числа. Для этого следует взять 10% от него, разделив его на 10 и добавить к ним половину полученного – еще 5%. Так, для определения 15% от числа 390, следует провести следующие действия: 390:10=39 – это 10% от числа. 39:2=19,5. 19,5+39=58,5 – 15% от числа 390.

Потренировавшись несколько раз, можно будет легко осуществлять такие операции в уме. Подобных приемов существует огромное множество, знание основных из них значительно облегчит процесс устного счета.

Как быстро умножать двузначные числа в уме?

Что еще стоит знать

Способ пять. Комбинированный

Появился в результате взаимодействия сложения и вычитания. Суть простая, необходимо взять число и начать отнимать от него различные числа или прибавлять с некоторыми реформациями. За исходное принимается число 9, начнем:

  1. От девяти отнимается шесть и одновременно прибавляется четыре. Ответ: семь.
  2. Семь разбивается на составные части, к примеру: 2 + 3 + 2.
  3. И к каждому прибавляется рандомное значение, возьмем 2. Получается, 2 + 2 = 4, 3 + 2 = 5 и 2 + 2 = 4.
  4. Суммируем полученные числа: 4 + 5 + 4 = 13.
  5. Вновь располагаем значение по частям и повторяем действия, используя только вычитание.

А с вычитанием больших чисел ситуация аналогична сложению. Все действия проговаривайте вслух, чтобы работало несколько видов памяти и ускорялся быстрый счет в уме.

Способ четыре. Вычитание

Как и со сложением, вычитание начинается с вводного урока

Внимание человека должно быть сконцентрировано исключительно на подсчете числовых значений. Отвлекаться на посторонние шумы нельзя, иначе ничего не выйдет

На этот раз вычтем из 10 8 и посмотрим, что из этого выйдет:

  1. Для начала узнаем, сколько надо вычесть из десяти, чтобы получить восемь. Ответ: два.
  2. Из десяти вычитаем восемь по частям — для начала эту двойку, а затем остальные числа. И посчитаем, сколько надо раз отнять, чтобы получить ноль. Ответ: пять.
  3. Вычитаем из десяти пятерку. Ответ: пять.
  4. И от восьми отнимаем полученный ответ. Ответ: три.

Первые занятия рекомендуется начинать с маленькими числами. И постепенно увеличивать количество цифр в числе. Быстрый счет в уме для детей происходит по вышеприведенному способу.

Способ второй. Базовые знания

Для быстрого старта подобраны задания начального уровня. Сложение и вычитание небольших цифр, например 3 и 10. Техника называется «Опора на десяток».

Порядок действий:

  1. Задавайте вопросы простого характера, типа сколько 3 + 8 или 9 + 1. Ответ: 11 и 10.
  2. Сколько не хватает числу 10, чтобы стать 14? Ответ: 4.
  3. Затем возьмите любое число, к примеру, 9, и узнайте, сколько 2 в этом числе, и при нехватке добавьте недостающие цифры. Ответ: четыре двоек + 1.
  4. Прибавьте число из второго действия (4) к той части, которой недоставало для получения (1) девяти и сложите их. Ответ: 5.

Отточите свой навык до совершенства и только потом приступайте к более сложным тестам.

Целенаправленное запоминание

После того, как ваш ребенок освоил самые простые значения таблицы умножения, можно приступать к более сложным множителям

Тут важно использовать и элементы игры, и многие другие полезные приемы запоминания: ассоциации, повторение, дробление на части, проверочные задачки, применение на практике. Многие из примеров нужно будет заучивать, запоминать и повторять неоднократно, чтобы ваш ребенок смог потом с легкостью называть значения таблицы умножения

Лучше идти по порядку, и не пытаться выучить все сразу. Начать лучше с квадратов и умножения на 3 и 4, постепенно переходя к остальным числам.

Некоторые педагоги считают правильным способом начать изучение таблицы умножения с конца от более сложных примеров к более простым. Но лучше так не делать, чтобы избежать стресса ребенка от непонимания того, как эти значения были получены. Умножая 3 на 3, ребенок может проверить себя на пальцах, и убедиться, почему в таблице умножения стоит именно 9. А если ему сразу предложить умножить 8 на 9, и сказать, что результат нужно просто запомнить, он не сможет применить свои знания на практике, что ухудшит запоминание и может отрицательно сказаться на его мотивации.

Квадраты чисел. Квадратом числа называется его произведение на самого себя. В русской таблице умножения есть всего 10 квадратов, которые нужно запомнить. Квадраты до примера «шесть на шесть тридцать шесть» обычно запоминаются на ура, и следующие 3 квадрата обычно тоже не вызывают особых трудностей. А 10 на 10 – будет сто, что мы уже проходили ранее на предыдущих уроках.

Таблица умножения на 3. Именно на этом этапе могут возникнуть первые сложности. Если так случилось, что ребенок не может запомнить какие-то значения, то самое время начать использовать карточки. А если это не помогает, и вы знаете, что у вашего чада больше гуманитарный склад ума, то можете попробовать (о них еще будет написано ) для запоминания таблицы умножения.

Таблица умножения на 4. Здесь также можете использовать карточки и стихи. Кроме того, дайте ребенку понять, что умножение на четыре — это то же самое, что и умножение на 2 и еще раз на 2. Эти и другие простейшие арифметические закономерности, которые могут быть полезны для развития устного счета, вы найдете в данной статье.

Таблица умножения на 5. Умножение на пять обычно дается просто. Интуитивно ребенку становится понятно, что все значения этого умножения расположены через 5 друг от друга и заканчиваются либо на 5, либо на 0. Все четные числа, умноженные на 5, всегда оканчиваются на ноль, а нечетные – оканчиваются на 5.

Таблица умножения на 6, 7, 8 и 9. Есть определенная особенность изучения сложных примеров из таблицы умножения. Если ребенок выучил квадраты, а также таблицу умножения до 5, то на самом деле ему осталось выучить совсем немного, так как остальные примеры он уже знает

Это хорошо видно на этой таблице умножения, где зеленым выделены ячейки, уже освоенные ребенком к данному моменту.
В итоге, оставшиеся клетки таблицы умножения содержат всего шесть произведений, которые и являются самыми сложными, и на которые стоит обратить пристальное внимание

  1. 6×7=42
  2. 6×8=48
  3. 6×9=54
  4. 7×8=56
  5. 7×9=63
  6. 8×9=72

Для запоминания этих выражений таблицы умножения лучше использовать игру в карточки, чтобы довести ответы до автоматизма. Эффективнее всего использовать 12 карточек (с переменой мест множителей). Как показывает практика, у школьников, а часто и у взрослых, именно с этими шестью произведениями часто бывают некоторые проблемы.

Вот и все! Всего за несколько уроков вся таблица умножения может быть легко и быстро выучена!

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий